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Solution

General Remarks
It is not necessary to hand in your results. You will find an exemplary solution on the lecture’s web page.

1) Classification applets
On the course homepage you can find a link to the Java applets used during the lecture. Try out the
demos to explore the capabilities of the perceptron and SVM classifiers. Especially test different kernels
and parameter settings for the SVM and note how the classification boundaries change.

2) Classification with SVM (from WRK exam 03/04)
Consider the following one-dimensional classification problem with six points given as vector-label pairs
(xi, yi). There are two classes with labels −1 and +1.

i xi yi

1 -2 -1
2 -5 -1
3 -3 -1
4 3 +1
5 2 +1
6 5 +1

a) Based on the given data, derive a linear discriminant function for data points x ∈ R of the form

g(x) = w0 + wx

with

g(xi) < 0 for yi = −1
g(xi) > 0 for yi = +1.

New data points x are then classified as +1 if g(x) > 0 and as −1 otherwise.

What is a feasible discriminant function? Is the solution unique?

Solution: Feasible solutions are e.g. all g(x) = ax for a > 0. The solution is not unique.
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b) One possibility to define a linear discriminant function g(x) is to demand that the values of g(x) for
the training data should be close to the label values. This leads to a least squares problem of the
following form:

min
w0,w

∑
i

(g(xi)− yi)2

Solve this problem analytically by computing the partial derivatives of the objective function
G(w0, w) :=

∑
i(g(xi)− yi)2 and setting them to zero.

Solution: One easily obtains:

∂G(w0, w)
∂w0

= 2
∑

i

(w0 + wxi − yi) = 0

⇔ w0 =
1
n

(

=0︷ ︸︸ ︷∑
i

yi−w

=0︷ ︸︸ ︷∑
i

xi) = 0

and

∂G(w0, w)
∂w

= 2
∑

i

(w0 + wxi − yi)xi = 0

⇔ w =
∑

i yixi∑
i x

2
i

=
5
19

Hence the optimal linear discriminant function becomes g(x) = 5
19x.

c) Given the linear classifier from the previous question, how would you classify the new data points
x∗1 = 0.2 and x∗2 = −0.2?

Solution: g(x∗1 = 0.2) = 1
19 > 0 → class +1, and g(x∗2 = −0.2) = − 1

19 < 0 → class −1.

d) Consider now an augmented training set with two additional data points (x7 = −1, y7 = −1) and
(x8 = 25, y8 = +1). Describe the effect of both additional points on the resulting least-squares
linear discriminant function. You don’t need to explicitly compute the new decision function. How
would you now classify the point x∗ = 0.2?

Solution: x8 is a correctly labeled point far away from the decision boundary. The least-squares
discriminant function tries to approximate the y-coordinates of all data points by minimizing the
squared distances between g(xi) and yi. The effect of x8 on the decision boundary will be huge,
since it disproportionately influences the squared error.

The effect of x7, on the other hand, will be rather small, since its x-coordinate is of the same order
of magnitude as those of the other samples in the class −1.

As the “outlier” x8 pulls the decision boundary further away from 0, the point x∗ = 0.2 now would
be classified as −1. In fact, the new linear classifier becomes g̃(x) = 0.068x− 0.204, which even
classifies the training point x5 = 2 incorrectly.

e) Let us return to the original training set {xi, yi}6
i=1. Suppose you have successfully trained a (hard-

margin) support vector machine (SVM) on this data set.

i) What would be the support vectors?

ii) What would be the corresponding classification rule?

Give reasons for your answers. You don’t need to explicitly calculate the decision function.

Solution:
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i) x1 and x5 are the support vectors, since they are closest to the separating max-margin plane.

ii) The classification rule is the same as in the least-squares case: decide class +1 if x > 0 and
class −1 else. This follows immediately from the symmetry of the support vectors around 0.

f) Return now to the augmented training set with two additional data points (x7 = −1, y7 = −1) and
(x8 = 25, y8 = +1).

i) Describe the effect of both additional data points on the resulting SVM classifier. You don’t
need to explicitly calculate the new decision function.

ii) What are now the support vectors?

iii) What is the new classification rule? What is the predicted class membership of two new data
points x∗1 = 0.2 and x∗2 = −0.2?

iv) What variant of the SVM could reduce the influence of the additional data points (x7, y7) and
(x8, y8)? Give reasons for your answer.

Solution:

i) x8 has no influence on the SVM, since it will not become a support vector. However, x7 falls
into the original margin, and will become a support vector. The decision boundary is shifted
to positive x-values.

ii) x7 and x5.

iii) The decision boundary is in the middle of x7 and x5: decide class +1 if x > 0.5 and class −1
else. Both new data points are assigned to class −1.

iv) The soft margin variant may help in this case. It allows “violations” of the margin (i.e. some
data points may be within the margin). So the sensitivity to x7 is reduced.

3) Perceptron
The goal of this exercise is to implement a perceptron in Matlab. Our implementation will use the
homogeneous coordinate representation of vectors, i. e. vectors x ∈ Rd are represented by y =
(1, x1, . . . , xd)

> ∈ Rd+1. This representation turns affine hyperplanes {x ∈ Rd|w>x + w0 = 0} with
normal vector w = (w1, . . . , wd)

> into hyperplanes through the origin of the form {y ∈ Rd+1|a>y = 0},
where a = (w0, w1, . . . , wd)

> is the vector characterizing the hyperplane.

To work with a perceptron, we need a two-class set of linearly separable data. For this purpose, you
can use the Matlab function [S,C] = fakedata(a,n), which is available on the course homepage.
It creates an artificial sample set of n data values in d-dimensional space that are separated by the
provided hyperplane a ∈ Rd+1. The data is represented by the n × (d + 1)-matrix S, so each row is
the (homogeneous coordinate) representation of a single data point. This matrix contains the data of
both classes, so we additionally represent the corresponding class labels by a vector C of length n, with
entries in {−1,+1}.

In order to visualize your results in 2D (for d = 2 or d = 3), you can use the Matlab function
visualize(S,C,a), which is also available on the course homepage.

a) To evaluate a perceptron solution (a hyperplane classifier trained by a perceptron algorithm), write
a function C=classify(S,a). S is a sample data set in homogeneous coordinates, and a is the
perceptron weight vector (which will be returned by the perceptron training algorithm). C is a class
label vector as described above.

Solution:
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function C = classify(S, a)

% calc distance to hyperplane
C = S*a;

% and normalize labels
C = -1*(C<0)+(C>=0);

b) Implement two versions of the batch perceptron training algorithm (cf. slide 191):

• The fixed step size version (”fixed-increment single sample perceptron”).

• The variable step size version with η (k) = 1
k , where k is the number of the current iteration.

Both functions should be of the form

[a,a history] = perceptrain(S,C),

where a is the normal vector of the hyperplane. a history is a matrix containing the history of the
normal vector throughout the training run, i. e. a (number of iterations) × (d + 1) matrix, the rows
of which are the interim results for a.

A recommended sanity check is to train a perceptron on a fakedata sample, and to make sure
that the returned hyperplane correctly classifies its own training data:

a_orig = [0 1 -0.5];
[S,C] = fakedata(a_orig, 30);
visualize(S,C,a_orig);
[a, a_history] = perceptrain(S, C);
for i=1:size(a_history,1)

visualize(S,C,a_history(i,:));
end;

Hint: Don’t forget to normalize the data points first according to their labels!

Solution:

• The fixed step size version:

function [a, a_history] = perceptrain(S, C)

% normalization of S
[n,d] = size(S);
S = S.*repmat(C,1,d);

% initialization
a = [0 ones(1,d-1)];
a_history = [a];
k = 0;

% training
E = ((S*a’)<0);
while (sum(E) > 0)

k = mod(k,n)+1;
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if (S(k,:)*a’ < 0)
a = a + S(k,:);
a_history = [a_history; a];

end
E = ((S*a’)<0);

end

• The variable step size version:

function [a, a_history] = perceptrain(S, C)

% normalization of S
[n,d] = size(S);
S = S.*repmat(C,1,d);

% initialization
a = [0 ones(1,d-1)];
a_history = [a];
theta = 1e-5;
k = 1;

% training
E = S(find((S*a’)<0), :); % collect misclassified data points
while (norm(sum(E)/k)>theta)

a = a + sum(E)/k;
a_history = [a_history; a];
k = k+1;
E = S(find((S*a’)<0), :);

end

The example gives:

Original hyperplane
Classifier obtained with fixed

step size training

Classifier obtained with
variable step size training

c) Generate a 2D random vector a, do a [S,C]=fakedata(a,100), and train both your perceptrons
on this set. Rerun fakedata to produce a test set, and check whether it is classified correctly.

Solution:

a_orig = [0 rand rand];
[S,C] = fakedata(a_orig, 100);
visualize(S,C,a_orig);
[a, a_history] = perceptrain(S, C);
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visualize(S,C,a);
[S2,C2] = fakedata(a_orig, 100);
C3 = classify(S2, a);
visualize(S2,C3,a);
sum(C2-C3) % should be zero!

Possible solution, where 1 data point of the test set is misclassified:

Original hyperplane
Classifier obtained with fixed

step size training
Classification of test data: 1

point is misclassified!
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