Variational Methods for Image Enhancement

Goal: find a smoothing image transformation according to some optimality criterion (cf. Wiener filter)

Model assumptions:

- the filtered image f should be similar to the original image b
- the filtered image f should be smooth

Continuous formulation: given $b: \Omega \rightarrow \mathbb{R}$, determine $f: \Omega \rightarrow$ \mathbb{R} such that it minimizes the cost

$$
I_{b}(f)=\frac{1}{2} \int_{\Omega}(\underbrace{(f-b)^{2}}_{\text {similarity }}+\mu \underbrace{\|\left.\nabla f\right|^{2}}_{\text {smoothness }}) d x d y
$$

The parameter μ is called 'regularization parameter'.

Question: How can the minimizing function f of the cost $I_{b}(f)$ be obtained?

Excursion: Calculus of Variations

The Calculus of Variations

Calculus of Real Numbers:

- considers real-valued functions $f(x)$ that map real numbers $x \in \mathbb{R}$ to real numbers
- if x_{0} is a minimum of f, then x_{0} necessarily satisfies $f^{\prime}\left(x_{0}\right):=$ $\frac{d f}{d x}\left(x_{0}\right)=0$
- x_{0} is a unique minimum if f is strictly convex

Variational Calculus:

- considers real-valued functionals $I(f)$ that map functions $f \in$ \mathcal{C}^{2} to real numbers
- if f_{0} is a minimum of I, then f_{0} necessarily satisfies the corresponding Euler-Lagrange equation, a differential equation in f
- f_{0} is a unique minimum if I is strictly convex

The mathematicians Leonhard Euler (left, 1707-1783) and JosephLouis Lagrange (right, 1736-1813) are two of the founders of the calculus of variations (Source: http://www-gap.dcs.st-and.ac.uk/~history/).

Euler-Lagrange Equation in 1D

Goal: determine a smooth function $f \in \mathcal{C}^{2}\left[x_{1}, x_{2}\right]$ which minimizes the functional

$$
I(f)=\int_{x_{1}}^{x_{2}} F\left(x, f, f^{\prime}\right) d x
$$

under the boundary conditions $f\left(x_{1}\right)=f_{1}$ and $f\left(x_{2}\right)=f_{2}$.
Euler-Lagrange equation: necessary condition for the minimizing function:

$$
F_{f}-\frac{d}{d x} F_{f^{\prime}}=0
$$

where we use the abbreviations

$$
F_{f}=\frac{\partial}{\partial f} F\left(x, f, f^{\prime}\right) \quad F_{f^{\prime}}=\frac{\partial}{\partial f^{\prime}} F\left(x, f, f^{\prime}\right)
$$

Visual Computing: Joachim M. Buhmann

Derivation of the Euler-Lagrange Equation

Assumption: let the function $f(x)$ be a minimum of I.
Idea: we add an arbitrary perturbation function $\eta \in \mathcal{C}^{2}\left[x_{1}, x_{2}\right]$ with $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ with a scaled amplitude ϵ to the function $f(x)$. This small variation $\epsilon \eta(x)$ should not change the value of the functional "too much".

Variation of $f(x): g(x):=f(x)+\epsilon \eta(x)$
with the derivative $g^{\prime}(x)=f^{\prime}(x)+\epsilon \eta^{\prime}(x)$
(note that the boundary constraints $g\left(x_{1}\right)=f_{1}$ and $g\left(x_{2}\right)=f_{2}$ are also fulfilled for g due to $\eta\left(x_{1}\right)=0$ and $\eta\left(x_{2}\right)=0$)

Necessary condition of extremality:

$$
\forall \eta:\left.\quad \frac{d}{d \epsilon} I(g)\right|_{\epsilon=0}=0
$$

(since $\phi(\epsilon):=I(g)$ has a minimum in $\epsilon=0$, so $\phi^{\prime}(0)=0$.)

Strategy of the analysis: exchange differentiation and integration and apply the chain rule to compute the total derivative of $F\left(x, g, g^{\prime}\right)$ with respect to ϵ :

$$
\begin{aligned}
0 & =\left.\frac{d}{d \epsilon} I(g)\right|_{\epsilon=0} \\
& =\left.\frac{d}{d \epsilon} \int_{x_{1}}^{x_{2}} F\left(x, g, g^{\prime}\right) d x\right|_{\epsilon=0} \\
& =\left.\int_{x_{1}}^{x_{2}}\left(\frac{d}{d \epsilon} F\left(x, g, g^{\prime}\right)\right) d x\right|_{\epsilon=0} \\
& =\int_{x_{1}}^{x_{2}} F_{f}\left(x, g, g^{\prime}\right) \eta(x)+\left.F_{f^{\prime}}\left(x, g, g^{\prime}\right) \eta^{\prime}(x) d x\right|_{\epsilon=0} \\
& =\int_{x_{1}}^{x_{2}} F_{f}\left(x, f, f^{\prime}\right) \eta(x)+F_{f^{\prime}}\left(x, f, f^{\prime}\right) \eta^{\prime}(x) d x
\end{aligned}
$$

Partial integration of the second term:
$\left(\int_{a}^{b} u \cdot v^{\prime} d x=[u \cdot v]_{a}^{b}-\int_{a}^{b} u^{\prime} \cdot v d x\right)$

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}} F_{f^{\prime}}\left(x, f, f^{\prime}\right) \eta^{\prime}(x) d x= \\
& \quad \underbrace{\left[F_{f^{\prime}}\left(x, f, f^{\prime}\right) \eta(x)\right]_{x_{1}}^{x_{2}}}_{=0, \text { since } \eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0}-\int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(F_{f^{\prime}}\left(x, f, f^{\prime}\right)\right) \eta(x) d x
\end{aligned}
$$

Inserting into the necessary condition yields:

$$
\int_{x_{1}}^{x_{2}}\left(F_{f}\left(x, f, f^{\prime}\right)-\frac{d}{d x} F_{f^{\prime}}\left(x, f, f^{\prime}\right)\right) \eta(x) d x=0
$$

which has to hold for all variations $\eta \in \mathcal{C}^{2}\left[x_{1}, x_{2}\right]$ with $\eta\left(x_{1}\right)=$ $\eta\left(x_{2}\right)=0$.

Fundamental lemma of variational calculus: If

$$
\int_{a}^{b} g(x) h(x) d x=0
$$

holds for all $h \in \mathcal{C}^{2}[a, b]$ with $h(a)=h(b)=0$, then $g(x) \equiv 0$.

Applying this lemma yields the Euler-Lagrange equation:

$$
F_{f}\left(x, f, f^{\prime}\right)-\frac{d}{d x} F_{f^{\prime}}\left(x, f, f^{\prime}\right)=0
$$

Natural boundary conditions

If explicit boundary constraints $f\left(x_{1}\right)=f_{1}$ and $f\left(x_{2}\right)=f_{2}$ are not given for f, it is possible to deduce the following 'natural' constraints from the variational formulation of the problem:

$$
F_{f^{\prime}}\left(x, f, f^{\prime}\right)=0
$$

for the boundary points $x=x_{1}$ and $x=x_{2}$.

Note that a sufficient number of boundary constraints is necessary to find a unique solution for a differental equation.

Explicit Form: What is $\frac{d}{d x} F_{f^{\prime}}$?

$\frac{d}{d x}$ is the total derivative of the functional $F_{f^{\prime}}$, i.e.

$$
\begin{aligned}
\frac{d}{d x} F_{f^{\prime}} & =\frac{\partial}{\partial x} F_{f^{\prime}}\left(x, f, f^{\prime}\right)+\frac{\partial}{\partial f} F_{f^{\prime}}\left(x, f, f^{\prime}\right) f^{\prime}+\frac{\partial}{\partial f^{\prime}} F_{f^{\prime}} f^{\prime \prime} \\
& =F_{f^{\prime}, x}+F_{f^{\prime}, f} f^{\prime}+F_{f^{\prime}, f^{\prime} f^{\prime \prime}}
\end{aligned}
$$

Euler-Lagrange equation in explicit form:

$$
\begin{aligned}
0 & =F_{f}-\frac{d}{d x} F_{f^{\prime}} \\
& =F_{f}-F_{f^{\prime}, x}-F_{f^{\prime}, f} f^{\prime}-F_{f^{\prime}, f^{\prime}} f^{\prime \prime}
\end{aligned}
$$

Example: Curve of minimal length

Goal: find the function f of shortest length connecting two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Curve length of f is given by:

$$
I(f)=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(f^{\prime}\right)^{2}} d x
$$

Variational Calculus with Constraints

Isoperimetric Problem:

$$
\begin{array}{ll}
\min _{f} I(f) & =\int_{x_{1}}^{x_{2}} F\left(x, f, f^{\prime}\right) d x \\
\text { s.t. } & 0=\int_{x_{1}}^{x_{2}} G_{j}\left(x, f, f^{\prime}\right) d x \quad 1 \leq j \leq m
\end{array}
$$

Introduce Lagrange variables:

$$
\tilde{F}\left(x, f, f^{\prime}\right)=F\left(x, f, f^{\prime}\right)+\sum_{j} \lambda_{j} G_{j}\left(x, f, f^{\prime}\right)
$$

Euler-Lagrange equation in this case:

$$
\tilde{F}_{f}-\frac{d}{d x} \tilde{F}_{f^{\prime}}=0
$$

Choose λ_{j} such that the constraints are fulfilled.

Partial derivatives of the integrand $F\left(x, f, f^{\prime}\right)=\sqrt{1+\left(f^{\prime}\right)^{2}}$:

$$
F_{f}=0, \quad F_{f^{\prime}}=\frac{f^{\prime}}{\sqrt{1+\left(f^{\prime}\right)^{2}}}
$$

Euler-Lagrange equation in this case:

$$
\frac{d}{d x} \frac{f^{\prime}(x)}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}=0 \quad \Longleftrightarrow \quad \frac{f^{\prime}(x)}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}=c \in \mathbb{R}
$$

Solve for f^{\prime} :

$$
f^{\prime}(x)=\frac{c}{\sqrt{1-c^{2}}} \Longleftrightarrow \quad f(x)=\frac{c}{\sqrt{1-c^{2}}} x+d
$$

$\Rightarrow f$ is a straight line, values of c and d are determined by the boundary conditions $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$

Potential Extension: Higher Order Derivatives

 Integrand with higher order derivatives:$$
I(f)=\int_{x_{1}}^{x_{2}} F\left(x, f, f^{\prime}, f^{\prime \prime}, \ldots\right) d x
$$

Euler-Lagrange equation in this case:

$$
F_{f}-\frac{d}{d x} F_{f^{\prime}}+\frac{d^{2}}{d x^{2}} F_{f^{\prime \prime}}-\cdots=0
$$

Note that the alternating sign comes from iterated partial integration.

Two Dimensional Variational Calculus

Functional is an integral in higher dimensions:

$$
I(f)=\int_{\Omega} F\left(x, y, f, f_{x}, f_{y}\right) d x d y
$$

with partial derivatives: $f_{x}:=\frac{\partial f}{\partial x}, f_{y}:=\frac{\partial f}{\partial y}$
Boundary constraints: the values of $f(x, y)$ are given on the boundary $\partial \Omega$ of the region Ω.

Euler-Lagrange equation for the 2-D case:

$$
F_{f}-\frac{\partial}{\partial x} F_{f_{x}}-\frac{\partial}{\partial y} F_{f_{y}}=0
$$

Can be derived similarly to the 1-D case based on small variations $\epsilon \eta$ and application of Green's integral theorem.

Natural boundary conditions: if n denotes the function giving the normal vector for every point on the boundary $\partial \Omega$, we obtain the constraint

$$
n^{\top}\binom{F_{f_{x}}}{F_{f_{y}}}=0
$$

on the boundary $\partial \Omega$, or equivalently

$$
F_{f_{x}} \frac{d y}{d s}=F_{f_{y}} \frac{d x}{d s}
$$

where s is a parameter for the boundary curve.

Application: Variational Methods for Image Enhancement

Original problem: find smoothing image transformation f which minimizes the cost

$$
I_{b}(f)=\frac{1}{2} \int_{\Omega}(\underbrace{(f-b)^{2}}_{\text {similarity }}+\mu \underbrace{\left\lfloor\left.\nabla f\right|^{2}\right.}_{\text {smoothness }}) d x d y
$$

Partial derivatives of the integrand

$$
F\left(x, y, f, f_{x}, f_{y}\right)=\frac{1}{2}(f-b)^{2}+\frac{\mu}{2}\left(f_{x}^{2}+f_{y}^{2}\right):
$$

$$
F_{f}=f-b, \quad F_{f_{x}}=\mu f_{x}, \quad F_{f_{y}}=\mu f_{y}
$$

Euler-Lagrange equation in this case

$$
\begin{aligned}
0 & =F_{f}-\frac{\partial}{\partial x} F_{f_{x}}-\frac{\partial}{\partial y} F_{f_{y}} \\
& =f-b-\frac{\partial}{\partial x}\left(\mu f_{x}\right)-\frac{\partial}{\partial y}\left(\mu f_{y}\right) \\
& =f-b-\mu \underbrace{f_{x x}+f_{y y}}_{\Delta f}
\end{aligned}
$$

- As it contains partial derivatives of the unknown function $f(x, y)$, this is a partial differential equation (PDE).
- Such equations usually have to be solved numerically.
- Discretization via finite difference approximation leads to linear system of equations which can be solved iteratively (e.g. Jacobi method).

Natural boundary conditions $n^{\top}\binom{F_{f_{x}}}{F_{f_{y}}}=0$ on the image boundary $\partial \Omega$ give

$$
0=n^{\top} \nabla f=\partial_{n} f
$$

where $\partial_{n} f$ denotes the derivative of f in the direction of n.

- The normal derivative has to vanish at the image boundaries.
- Numerically, this can be established by extending the image by mirroring the boundary pixels.

Connection to linear diffusion: Euler-Lagrange equation

$$
f_{x x}+f_{y y}+\frac{b-f}{\mu}=0
$$

can be interpreted as steady-state ($t \rightarrow \infty$) of linear diffusion with an additional bias term

$$
f_{t}=f_{x x}+f_{y y}+\frac{b-f}{\mu} .
$$

\Rightarrow discretization of linear diffusion process gives a gradient descent method for minimizing $I_{b}(f)$

Top left: Test image, 128×128 pixels. Top right: Variational method with $\mu=5$. Bottom left: $\mu=20$. Bottom right: $\mu=100$. Author: J. Weickert.

Variational Calculus and Nonlinear Diffusion

Nonlinear diffusion reduces blurring of edges
Idea: replace smoothness term $|\nabla f|^{2}$ by potential function $\Psi(|\nabla f|)$ which penalizes large gradients less severely

Perona-Malik potential:

$$
\Psi(|\nabla f|)=\frac{\lambda^{2}}{2} \log \left(1+\frac{|\nabla f|^{2}}{\lambda^{2}}\right)
$$

Cost minimization with Perona-Malik potential (no similarity term):

$$
I(f):=\int_{\Omega} \Psi(|\nabla f|) d x d y=\int_{\Omega} \frac{\lambda^{2}}{2} \log \left(1+\frac{|\nabla f|^{2}}{\lambda^{2}}\right) d x d y
$$

Partial derivatives of $\Psi(|\nabla f|)$:

$$
\Psi_{f}=0, \quad \Psi_{f_{x}}=\frac{f_{x}}{1+|\nabla f|^{2} / \lambda^{2}}, \quad \Psi_{f_{y}}=\frac{f_{y}}{1+|\nabla f|^{2} / \lambda^{2}}
$$

Euler-Lagrange equation:

$$
\frac{\partial}{\partial x} \Psi_{f_{x}}+\frac{\partial}{\partial y} \Psi_{f_{y}}-\Psi_{f}=\operatorname{div}\left(\frac{1}{1+|\nabla f|^{2} / \lambda^{2}} \nabla f\right)=0 \approx f_{t}
$$

\Rightarrow diffusion process defines gradient descent method for minimizing $I(f)$.

Nonlinear Variational Method

Cost minimization with potential $\Psi(|\nabla f|)=\lambda \sqrt{1+|\nabla f|^{2} / \lambda^{2}}$

Top left: Test image, 128×128 pixels. Top right: Nonlinear variat. method with $\lambda=1$ and $\mu=20$. Bottom left: $\mu=50$. Bottom right: $\mu=100$. Author: J. Weickert.

