
Variational Methods for Image Enhancement

Goal: find a smoothing image transformation according to so-
me optimality criterion (cf. Wiener filter)

Model assumptions:
• the filtered image f should be similar to the original image b

• the filtered image f should be smooth

Continuous formulation: given b : Ω → R, determine f : Ω →
R such that it minimizes the cost

Ib(f) =
1
2

∫
Ω

(
(f − b)2︸ ︷︷ ︸
similarity

+ μ |∇f |2︸ ︷︷ ︸
smoothness

)
dx dy

The parameter μ is called ‘regularization parameter’.
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Question: How can the minimizing function f of the cost Ib(f)
be obtained?

Excursion: Calculus of Variations
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The Calculus of Variations

Calculus of Real Numbers:
• considers real-valued functions f(x) that map real numbers

x ∈ R to real numbers
• if x0 is a minimum of f , then x0 necessarily satisfies f ′(x0) :=

df
dx(x0) = 0

• x0 is a unique minimum if f is strictly convex

Variational Calculus:
• considers real-valued functionals I(f) that map functions f ∈
C2 to real numbers

• if f0 is a minimum of I, then f0 necessarily satisfies the cor-
responding Euler-Lagrange equation, a differential equation
in f

• f0 is a unique minimum if I is strictly convex
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The mathematicians Leonhard Euler (left, 1707–1783) and Joseph-
Louis Lagrange (right, 1736–1813) are two of the founders of the calcu-
lus of variations (Source: http://www-gap.dcs.st-and.ac.uk/˜history/).
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Euler-Lagrange Equation in 1D

Goal: determine a smooth function f ∈ C2[x1, x2] which mini-
mizes the functional

I(f) =
∫ x2

x1

F (x, f, f ′) dx

under the boundary conditions f(x1) = f1 and f(x2) = f2.

Euler-Lagrange equation: necessary condition for the mini-
mizing function:

Ff − d

dx
Ff ′ = 0

where we use the abbreviations

Ff =
∂

∂f
F (x, f, f ′) Ff ′ =

∂

∂f ′F (x, f, f ′)
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Derivation of the Euler-Lagrange Equation

x2x1

optimal function f(x)

variation f(x) + ² (x)

f(x1) = f1

f(x2) = f2

Assumption: let the function f(x) be a minimum of I.

Idea: we add an arbitrary perturbation function η ∈ C2[x1, x2]
with η(x1) = η(x2) = 0 with a scaled amplitude ε to the func-
tion f(x). This small variation εη(x) should not change the
value of the functional “too much”.
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Variation of f(x): g(x) := f(x) + εη(x)
with the derivative g′(x) = f ′(x) + εη′(x)

(note that the boundary constraints g(x1) = f1 and g(x2) = f2

are also fulfilled for g due to η(x1) = 0 and η(x2) = 0)

Necessary condition of extremality:

∀ η :
d

dε
I(g)

∣∣∣∣
ε=0

= 0

(since φ(ε) := I(g) has a minimum in ε = 0, so φ′(0) = 0.)
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Strategy of the analysis: exchange differentiation and integra-
tion and apply the chain rule to compute the total derivative
of F (x, g, g′) with respect to ε:

0 =
d

dε
I(g)

∣∣∣∣
ε=0

=
d

dε

∫ x2

x1

F (x, g, g′) dx

∣∣∣∣
ε=0

=
∫ x2

x1

(
d

dε
F (x, g, g′)

)
dx

∣∣∣∣
ε=0

=
∫ x2

x1

Ff(x, g, g′)η(x) + Ff ′(x, g, g′)η′(x) dx

∣∣∣∣
ε=0

=
∫ x2

x1

Ff(x, f, f ′)η(x) + Ff ′(x, f, f ′)η′(x) dx
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Partial integration of the second term:
(
∫ b

a
u · v′ dx = [u · v]ba −

∫ b

a
u′ · v dx)

∫ x2

x1

Ff ′(x, f, f ′)η′(x) dx =

[
Ff ′(x, f, f ′)η(x)

]x2

x1︸ ︷︷ ︸
=0, since η(x1)=η(x2)=0

−
∫ x2

x1

d

dx

(
Ff ′(x, f, f ′)

)
η(x) dx

Inserting into the necessary condition yields:
∫ x2

x1

(
Ff(x, f, f ′) − d

dx
Ff ′(x, f, f ′)

)
η(x) dx = 0

which has to hold for all variations η ∈ C2[x1, x2] with η(x1) =
η(x2) = 0.
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Fundamental lemma of variational calculus: If
∫ b

a

g(x)h(x) dx = 0

holds for all h ∈ C2[a, b] with h(a) = h(b) = 0, then g(x) ≡ 0.

Applying this lemma yields the Euler-Lagrange equation:

Ff(x, f, f ′) − d

dx
Ff ′(x, f, f ′) = 0

�
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Natural boundary conditions

If explicit boundary constraints f(x1) = f1 and f(x2) = f2

are not given for f , it is possible to deduce the following ‘na-
tural’ constraints from the variational formulation of the pro-
blem:

Ff ′(x, f, f ′) = 0

for the boundary points x = x1 and x = x2.

Note that a sufficient number of boundary constraints is ne-
cessary to find a unique solution for a differental equation.
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Explicit Form: What is d
dxFf ′?

d
dx is the total derivative of the functional Ff ′, i.e.

d

dx
Ff ′ =

∂

∂x
Ff ′(x, f, f ′) +

∂

∂f
Ff ′(x, f, f ′)f ′ +

∂

∂f ′Ff ′f ′′

= Ff ′,x + Ff ′,ff ′ + Ff ′,f ′f ′′

Euler-Lagrange equation in explicit form:

0 = Ff − d

dx
Ff ′

= Ff − Ff ′,x − Ff ′,ff ′ − Ff ′,f ′f ′′

Visual Computing: Joachim M. Buhmann 114/129



Example: Curve of minimal length

Goal: find the function f of shortest length connecting two
points (x1, y1) and (x2, y2)

x_1 x_2

y_1

y_2

 f(x)

Curve length of f is given by:

I(f) =
∫ x2

x1

√
1 + (f ′)2 dx
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Partial derivatives of the integrand F (x, f, f ′) =
√

1 + (f ′)2:

Ff = 0, Ff ′ =
f ′√

1 + (f ′)2

Euler-Lagrange equation in this case:

d

dx

f ′(x)√
1 + (f ′(x))2

= 0 ⇐⇒ f ′(x)√
1 + (f ′(x))2

= c ∈ R

Solve for f ′:

f ′(x) =
c√

1 − c2
⇐⇒ f(x) =

c√
1 − c2

x + d

⇒ f is a straight line, values of c and d are determined by the
boundary conditions f(x1) = y1, f(x2) = y2
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Variational Calculus with Constraints

Isoperimetric Problem:

min
f

I(f) =
∫ x2

x1

F (x, f, f ′) dx

s.t. 0 =
∫ x2

x1

Gj(x, f, f ′) dx 1 ≤ j ≤ m

Introduce Lagrange variables:

F̃ (x, f, f ′) = F (x, f, f ′) +
∑

j

λjGj(x, f, f ′)

Euler-Lagrange equation in this case:

F̃f − d

dx
F̃f ′ = 0

Choose λj such that the constraints are fulfilled.
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Potential Extension: Higher Order Derivatives

Integrand with higher order derivatives:

I(f) =
∫ x2

x1

F (x, f, f ′, f ′′, . . . ) dx

Euler-Lagrange equation in this case:

Ff − d

dx
Ff ′ +

d2

dx2
Ff ′′ − · · · = 0

Note that the alternating sign comes from iterated partial in-
tegration.
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Potential Extension: Dependence on Several
Functions

Integrand with dependence on the functions f1, f2, . . . :

I(f1, f2, . . . ) =
∫ x2

x1

F (x, f1, f2, . . . , f
′
1, f

′
2, . . . ) dx

Euler-Lagrange equations in this case:

Ff1 −
d

dx
Ff ′

1
= 0

Ff2 −
d

dx
Ff ′

2
= 0

. . .

We derive as many equations as we have functional depen-
dencies.
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Two Dimensional Variational Calculus

Functional is an integral in higher dimensions:

I(f) =
∫

Ω

F (x, y, f, fx, fy) dx dy

with partial derivatives: fx := ∂f
∂x, fy := ∂f

∂y

Boundary constraints: the values of f(x, y) are given on the
boundary ∂Ω of the region Ω.

Euler-Lagrange equation for the 2-D case:

Ff − ∂

∂x
Ffx −

∂

∂y
Ffy = 0

Can be derived similarly to the 1-D case based on small variations εη and
application of Green’s integral theorem.

Visual Computing: Joachim M. Buhmann 120/129

Natural boundary conditions: if n denotes the function giving
the normal vector for every point on the boundary ∂Ω, we
obtain the constraint

n�
(

Ffx

Ffy

)
= 0

on the boundary ∂Ω, or equivalently

Ffx

dy

ds
= Ffy

dx

ds

where s is a parameter for the boundary curve.
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Application: Variational Methods for Image
Enhancement

Original problem: find smoothing image transformation f

which minimizes the cost

Ib(f) =
1
2

∫
Ω

(
(f − b)2︸ ︷︷ ︸
similarity

+ μ |∇f |2︸ ︷︷ ︸
smoothness

)
dx dy

Partial derivatives of the integrand
F (x, y, f, fx, fy) = 1

2(f − b)2 + μ
2(f2

x + f2
y ):

Ff = f − b, Ffx = μfx, Ffy = μfy
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Euler-Lagrange equation in this case:

0 = Ff − ∂

∂x
Ffx −

∂

∂y
Ffy

= f − b − ∂

∂x
(μfx) − ∂

∂y
(μfy)

= f − b − μ fxx + fyy︸ ︷︷ ︸
Δf

• As it contains partial derivatives of the unknown function
f(x, y), this is a partial differential equation (PDE).

• Such equations usually have to be solved numerically.

• Discretization via finite difference approximation leads to line-
ar system of equations which can be solved iteratively (e.g.
Jacobi method).
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Natural boundary conditions n�
(

Ffx

Ffy

)
= 0 on the image

boundary ∂Ω give

0 = n�∇f = ∂nf

where ∂nf denotes the derivative of f in the direction of n.

• The normal derivative has to vanish at the image boundaries.

• Numerically, this can be established by extending the image
by mirroring the boundary pixels.
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Connection to linear diffusion: Euler-Lagrange equation

fxx + fyy +
b − f

μ
= 0

can be interpreted as steady-state (t → ∞) of linear diffusion
with an additional bias term

ft = fxx + fyy +
b − f

μ
.

⇒ discretization of linear diffusion process gives a gradient
descent method for minimizing Ib(f)
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Top left: Test image, 128 × 128 pixels. Top right: Variational method with μ = 5.

Bottom left: μ = 20. Bottom right: μ = 100. Author: J. Weickert.
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Variational Calculus and Nonlinear Diffusion

Nonlinear diffusion reduces blurring of edges

Idea: replace smoothness term |∇f |2 by potential function
Ψ(|∇f |) which penalizes large gradients less severely

Perona-Malik potential:

Ψ(|∇f |) =
λ2

2
log

(
1 +

|∇f |2
λ2

)
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Cost minimization with Perona-Malik potential (no similarity
term):

I(f) :=
∫

Ω

Ψ(|∇f |) dx dy =
∫

Ω

λ2

2
log

(
1 +

|∇f |2
λ2

)
dx dy

Partial derivatives of Ψ(|∇f |):

Ψf = 0, Ψfx =
fx

1 + |∇f |2/λ2
, Ψfy =

fy

1 + |∇f |2/λ2

Euler-Lagrange equation:

∂

∂x
Ψfx +

∂

∂y
Ψfy − Ψf = div

(
1

1 + |∇f |2/λ2
∇f

)
= 0 ≈ ft

⇒ diffusion process defines gradient descent method for mi-
nimizing I(f).
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Nonlinear Variational Method

Cost minimization with potential Ψ(|∇f |) = λ
√

1 + |∇f |2/λ2

Top left: Test image, 128× 128 pixels. Top right: Nonlinear variat. method with λ = 1

and μ = 20. Bottom left: μ = 50. Bottom right: μ = 100. Author: J. Weickert.
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