Variational Methods for Image Enhancement

Goal: find a smoothing image transformation according to some optimality criterion (cf. Wiener filter)

Model assumptions:

- the filtered image f should be similar to the original image b
- the filtered image f should be smooth

Continuous formulation: given $b : \Omega \to \mathbb{R}$, determine $f : \Omega \to \mathbb{R}$ such that it minimizes the cost

$$I_b(f) = \frac{1}{2} \int_{\Omega} \left(\underbrace{(f-b)^2}_{\text{similarity}} + \mu \underbrace{|\nabla f|^2}_{\text{smoothness}} \right) dx \, dy$$

The parameter μ is called 'regularization parameter'.

Visual Computing: Joachim M. Buhmann

Question: How can the minimizing function f of the cost $I_b(f)$ be obtained?

Excursion: Calculus of Variations

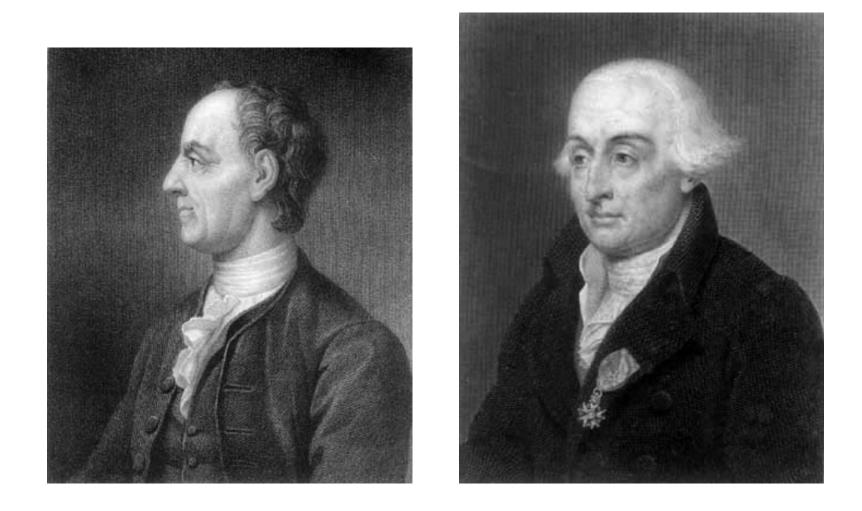
The Calculus of Variations

Calculus of Real Numbers:

- considers real-valued *functions* f(x) that map *real numbers* $x \in \mathbb{R}$ to real numbers
- if x_0 is a minimum of f, then x_0 necessarily satisfies $f'(x_0) := \frac{df}{dx}(x_0) = 0$
- x_0 is a unique minimum if f is strictly convex

Variational Calculus:

- considers real-valued functionals I(f) that map functions $f \in \mathcal{C}^2$ to real numbers
- if f_0 is a minimum of *I*, then f_0 necessarily satisfies the corresponding *Euler-Lagrange equation*, a differential equation in *f*
- f_0 is a unique minimum if I is strictly convex



The mathematicians **Leonhard Euler** (left, 1707–1783) and **Joseph-Louis Lagrange** (right, 1736–1813) are two of the founders of the calculus of variations (Source: http://www-gap.dcs.st-and.ac.uk/~history/).

Euler-Lagrange Equation in 1D

Goal: determine a smooth function $f \in C^2[x_1, x_2]$ which minimizes the functional

$$I(f) = \int_{x_1}^{x_2} F(x, f, f') \, dx$$

under the boundary conditions $f(x_1) = f_1$ and $f(x_2) = f_2$.

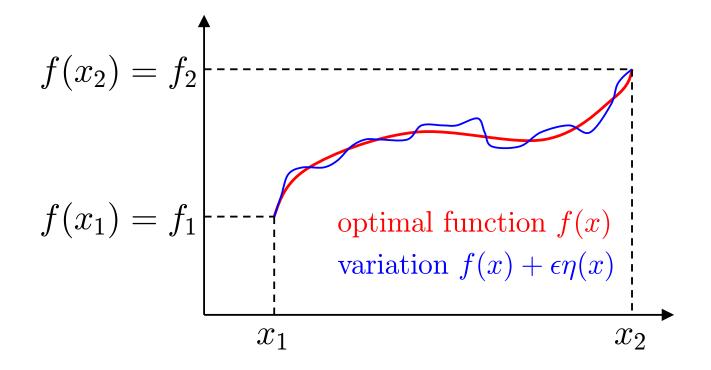
Euler-Lagrange equation: necessary condition for the minimizing function:

$$F_f - \frac{d}{dx}F_{f'} = 0$$

where we use the abbreviations

$$F_f = \frac{\partial}{\partial f} F(x, f, f') \qquad F_{f'} = \frac{\partial}{\partial f'} F(x, f, f')$$

Derivation of the Euler-Lagrange Equation



Assumption: let the function f(x) be a minimum of *I*.

Idea: we add an arbitrary perturbation function $\eta \in C^2[x_1, x_2]$ with $\eta(x_1) = \eta(x_2) = 0$ with a scaled amplitude ϵ to the function f(x). This small variation $\epsilon \eta(x)$ should not change the value of the functional "too much". Variation of f(x): $g(x) := f(x) + \epsilon \eta(x)$ with the derivative $g'(x) = f'(x) + \epsilon \eta'(x)$

(note that the boundary constraints $g(x_1) = f_1$ and $g(x_2) = f_2$ are also fulfilled for g due to $\eta(x_1) = 0$ and $\eta(x_2) = 0$)

Necessary condition of extremality:

$$\forall \eta : \left. \frac{d}{d\epsilon} I(g) \right|_{\epsilon=0} = 0$$

(since $\phi(\epsilon) := I(g)$ has a minimum in $\epsilon = 0$, so $\phi'(0) = 0$.)

Strategy of the analysis: exchange differentiation and integration and apply the chain rule to compute the total derivative of F(x, g, g') with respect to ϵ :

$$D = \frac{d}{d\epsilon} I(g) \Big|_{\epsilon=0}$$

= $\frac{d}{d\epsilon} \int_{x_1}^{x_2} F(x, g, g') dx \Big|_{\epsilon=0}$
= $\int_{x_1}^{x_2} \left(\frac{d}{d\epsilon} F(x, g, g') \right) dx \Big|_{\epsilon=0}$
= $\int_{x_1}^{x_2} F_f(x, g, g') \eta(x) + F_{f'}(x, g, g') \eta'(x) dx \Big|_{\epsilon=0}$
= $\int_{x_1}^{x_2} F_f(x, f, f') \eta(x) + F_{f'}(x, f, f') \eta'(x) dx$

Partial integration of the second term:

$$(\int_{a}^{b} u \cdot v' \, dx = [u \cdot v]_{a}^{b} - \int_{a}^{b} u' \cdot v \, dx)$$

$$\int_{x_{1}}^{x_{2}} F_{f'}(x, f, f') \eta'(x) \, dx =$$

$$\underbrace{\left[F_{f'}(x, f, f') \eta(x)\right]_{x_{1}}^{x_{2}}}_{=0, \text{ since } \eta(x_{1}) = \eta(x_{2}) = 0}^{x_{2}} - \int_{x_{1}}^{x_{2}} \frac{d}{dx} \left(F_{f'}(x, f, f')\right) \eta(x) \, dx$$

Inserting into the necessary condition yields:

$$\int_{x_1}^{x_2} \left(F_f(x, f, f') - \frac{d}{dx} F_{f'}(x, f, f') \right) \eta(x) \, dx = 0$$

which has to hold for all variations $\eta \in C^2[x_1, x_2]$ with $\eta(x_1) = \eta(x_2) = 0$.

Fundamental lemma of variational calculus: If

$$\int_{a}^{b} g(x)h(x) \, dx = 0$$

holds for all $h \in C^2[a, b]$ with h(a) = h(b) = 0, then $g(x) \equiv 0$.

Applying this lemma yields the Euler-Lagrange equation:

$$F_f(x, f, f') - \frac{d}{dx}F_{f'}(x, f, f') = 0$$

Natural boundary conditions

If explicit boundary constraints $f(x_1) = f_1$ and $f(x_2) = f_2$ are not given for f, it is possible to deduce the following 'natural' constraints from the variational formulation of the problem:

$$F_{f'}(x, f, f') = 0$$

for the boundary points $x = x_1$ and $x = x_2$.

Note that a sufficient number of boundary constraints is necessary to find a *unique* solution for a differental equation.

Explicit Form: What is $\frac{d}{dx}F_{f'}$?

 $\frac{d}{dx}$ is the *total derivative* of the functional $F_{f'}$, i.e.

$$\frac{d}{dx}F_{f'} = \frac{\partial}{\partial x}F_{f'}(x,f,f') + \frac{\partial}{\partial f}F_{f'}(x,f,f')f' + \frac{\partial}{\partial f'}F_{f'}f''$$
$$= F_{f',x} + F_{f',f}f' + F_{f',f'}f''$$

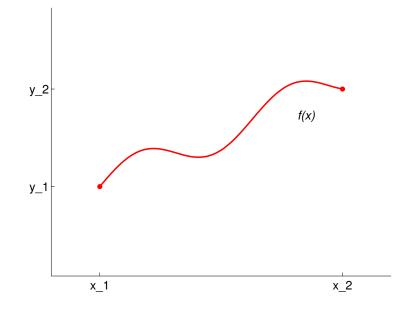
Euler-Lagrange equation in explicit form:

$$0 = F_{f} - \frac{d}{dx}F_{f'}$$

= $F_{f} - F_{f',x} - F_{f',f}f' - F_{f',f'}f''$

Example: Curve of minimal length

Goal: find the function f of shortest length connecting two points (x_1, y_1) and (x_2, y_2)



Curve length of f is given by:

$$I(f) = \int_{x_1}^{x_2} \sqrt{1 + (f')^2} \, dx$$

Partial derivatives of the integrand $F(x, f, f') = \sqrt{1 + (f')^2}$:

$$F_f = 0, \qquad F_{f'} = \frac{f'}{\sqrt{1 + (f')^2}}$$

Euler-Lagrange equation in this case:

$$\frac{d}{dx}\frac{f'(x)}{\sqrt{1+(f'(x))^2}} = 0 \quad \Longleftrightarrow \quad \frac{f'(x)}{\sqrt{1+(f'(x))^2}} = c \in \mathbb{R}$$

Solve for f':

$$f'(x) = \frac{c}{\sqrt{1 - c^2}} \quad \Longleftrightarrow \quad f(x) = \frac{c}{\sqrt{1 - c^2}} x + d$$

 \Rightarrow *f* is a straight line, values of *c* and *d* are determined by the boundary conditions $f(x_1) = y_1, f(x_2) = y_2$

Variational Calculus with Constraints

Isoperimetric Problem:

$$\min_{f} I(f) = \int_{x_{1}}^{x_{2}} F(x, f, f') dx$$

s.t.
$$0 = \int_{x_{1}}^{x_{2}} G_{j}(x, f, f') dx \quad 1 \le j \le m$$

Introduce Lagrange variables:

$$\tilde{F}(x, f, f') = F(x, f, f') + \sum_{j} \lambda_j G_j(x, f, f')$$

Euler-Lagrange equation in this case:

$$\tilde{F}_f - \frac{d}{dx}\tilde{F}_{f'} = 0$$

Choose λ_j such that the constraints are fulfilled.

Potential Extension: Higher Order Derivatives

Integrand with higher order derivatives:

$$I(f) = \int_{x_1}^{x_2} F(x, f, f', f'', \dots) \, dx$$

Euler-Lagrange equation in this case:

$$F_f - \frac{d}{dx}F_{f'} + \frac{d^2}{dx^2}F_{f''} - \dots = 0$$

Note that the alternating sign comes from iterated partial integration.

Potential Extension: Dependence on Several Functions

Integrand with dependence on the functions f_1, f_2, \ldots :

$$I(f_1, f_2, \dots) = \int_{x_1}^{x_2} F(x, f_1, f_2, \dots, f'_1, f'_2, \dots) dx$$

Euler-Lagrange equations in this case:

$$F_{f_1} - \frac{d}{dx} F_{f_1'} = 0$$

$$F_{f_2} - \frac{d}{dx} F_{f_2'} = 0$$

We derive as many equations as we have functional dependencies.

. . .

Two Dimensional Variational Calculus

Functional is an integral in higher dimensions:

$$I(f) = \int_{\Omega} F(x, y, f, f_x, f_y) \, dx \, dy$$

with partial derivatives: $f_x := \frac{\partial f}{\partial x}, f_y := \frac{\partial f}{\partial y}$

Boundary constraints: the values of f(x, y) are given on the boundary $\partial \Omega$ of the region Ω .

Euler-Lagrange equation for the 2-D case:

$$F_f - \frac{\partial}{\partial x} F_{f_x} - \frac{\partial}{\partial y} F_{f_y} = 0$$

Can be derived similarly to the 1-D case based on small variations $\epsilon \eta$ and application of Green's integral theorem.

Natural boundary conditions: if *n* denotes the function giving the normal vector for every point on the boundary $\partial \Omega$, we obtain the constraint

$$n^{\top} \begin{pmatrix} F_{f_x} \\ F_{f_y} \end{pmatrix} = 0$$

on the boundary $\partial \Omega$, or equivalently

$$F_{f_x}\frac{dy}{ds} = F_{f_y}\frac{dx}{ds}$$

where s is a parameter for the boundary curve.

Application: Variational Methods for Image Enhancement

Original problem: find smoothing image transformation f which minimizes the cost

$$I_b(f) = \frac{1}{2} \int_{\Omega} \left(\underbrace{(f-b)^2}_{\text{similarity}} + \mu \underbrace{|\nabla f|^2}_{\text{smoothness}} \right) dx \, dy$$

Partial derivatives of the integrand $F(x, y, f, f_x, f_y) = \frac{1}{2}(f - b)^2 + \frac{\mu}{2}(f_x^2 + f_y^2)$:

$$F_f = f - b,$$
 $F_{f_x} = \mu f_x,$ $F_{f_y} = \mu f_y$

Euler-Lagrange equation in this case:

$$0 = F_f - \frac{\partial}{\partial x} F_{f_x} - \frac{\partial}{\partial y} F_{f_y}$$
$$= f - b - \frac{\partial}{\partial x} (\mu f_x) - \frac{\partial}{\partial y} (\mu f_y)$$
$$= f - b - \mu \underbrace{f_{xx} + f_{yy}}_{\Delta f}$$

- As it contains partial derivatives of the unknown function f(x, y), this is a *partial differential equation (PDE)*.
- Such equations usually have to be solved numerically.
- Discretization via finite difference approximation leads to linear system of equations which can be solved iteratively (e.g. Jacobi method).

Natural boundary conditions $n^{\top} \begin{pmatrix} F_{f_x} \\ F_{f_y} \end{pmatrix} = 0$ on the image boundary $\partial \Omega$ give

$$0 = n^{\top} \nabla f = \partial_n f$$

where $\partial_n f$ denotes the derivative of f in the direction of n.

- The normal derivative has to vanish at the image boundaries.
- Numerically, this can be established by extending the image by mirroring the boundary pixels.

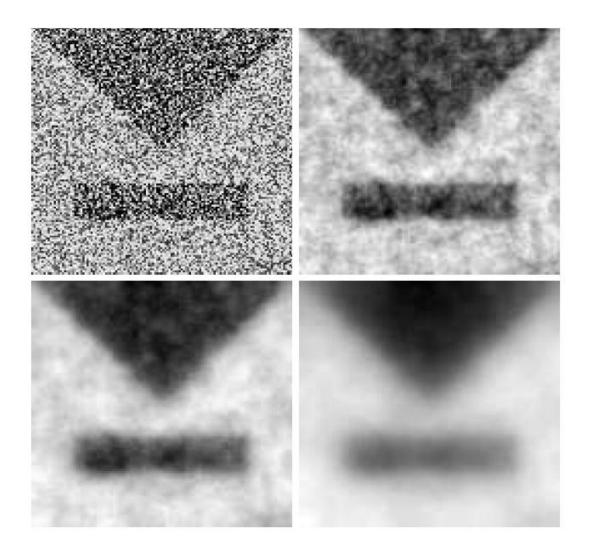
Connection to linear diffusion: Euler-Lagrange equation

$$f_{xx} + f_{yy} + \frac{b-f}{\mu} = 0$$

can be interpreted as steady-state ($t \rightarrow \infty$) of linear diffusion with an additional bias term

$$f_t = f_{xx} + f_{yy} + \frac{b-f}{\mu}.$$

 \Rightarrow discretization of linear diffusion process gives a gradient descent method for minimizing $I_b(f)$



Top left: Test image, 128×128 pixels. Top right: Variational method with $\mu = 5$. Bottom left: $\mu = 20$. Bottom right: $\mu = 100$. Author: J. Weickert.

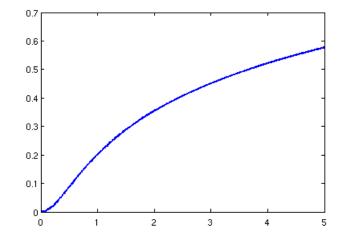
Variational Calculus and Nonlinear Diffusion

Nonlinear diffusion reduces blurring of edges

Idea: replace smoothness term $|\nabla f|^2$ by potential function $\Psi(|\nabla f|)$ which penalizes large gradients less severely

Perona-Malik potential:

$$\Psi(|\nabla f|) = \frac{\lambda^2}{2} \log\left(1 + \frac{|\nabla f|^2}{\lambda^2}\right)$$



Cost minimization with Perona-Malik potential (no similarity term):

$$I(f) := \int_{\Omega} \Psi(|\nabla f|) \, dx \, dy = \int_{\Omega} \frac{\lambda^2}{2} \log\left(1 + \frac{|\nabla f|^2}{\lambda^2}\right) \, dx \, dy$$

Partial derivatives of $\Psi(|\nabla f|)$:

$$\Psi_f = 0, \qquad \Psi_{f_x} = \frac{f_x}{1 + |\nabla f|^2 / \lambda^2}, \qquad \Psi_{f_y} = \frac{f_y}{1 + |\nabla f|^2 / \lambda^2}$$

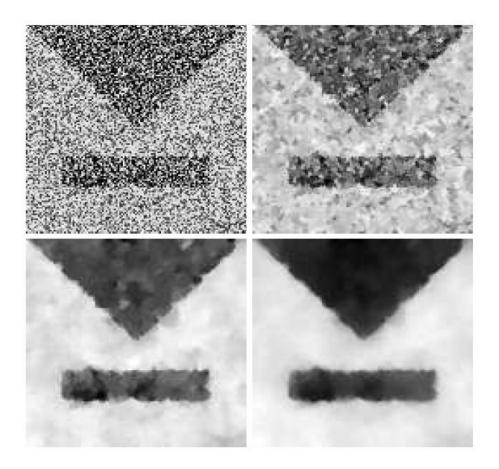
Euler-Lagrange equation:

$$\frac{\partial}{\partial x}\Psi_{f_x} + \frac{\partial}{\partial y}\Psi_{f_y} - \Psi_f = \operatorname{div}\left(\frac{1}{1 + |\nabla f|^2/\lambda^2} \nabla f\right) = 0 \approx f_t$$

 \Rightarrow diffusion process defines gradient descent method for minimizing I(f).

Nonlinear Variational Method

Cost minimization with potential $\Psi(|\nabla f|) = \lambda \sqrt{1 + |\nabla f|^2 / \lambda^2}$



Top left: Test image, 128×128 pixels. Top right: Nonlinear variat. method with $\lambda = 1$ and $\mu = 20$. Bottom left: $\mu = 50$. Bottom right: $\mu = 100$. Author: J. Weickert.