

Lagrangian Optimization Theory

Optimization under constraints (Primal Problem):

Given an optimization problem with domain $\Omega \subseteq \mathbb{R}^d$,

 $\begin{array}{ll} \mbox{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega \\ \mbox{subject to} & g_i(\mathbf{w}) \leq 0, & i=1,\ldots,k \\ & h_i(\mathbf{w})=0, & i=1,\ldots,m \end{array}$

The generalized Lagrangian function is defined as

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) + \sum_{i=1}^{m} \beta_i h_i(\mathbf{w})$$

Visual Computing: Joachim M. Buhmann — Machine Learning

199/267

Lagrangian Dual Problem (1797)

Definition (Langrangian Dual Problem):

The respective Lagrangian dual problem is given by

 $\begin{array}{ll} \text{maximize} & \theta(\boldsymbol{\alpha},\boldsymbol{\beta}),\\ \text{subject to} & \alpha_i \geq 0, \quad i=1,\ldots,k \end{array}$

where
$$\theta(\alpha, \beta) = \inf_{\mathbf{w} \in \Omega} L(\mathbf{w}, \alpha, \beta)$$

The value of the objective function at the optimal solution is called the **value of the problem**.

The **difference** between the values of the primal and the dual problems is known as the *duality gap*.

Visual Computing: Joachim M. Buhmann — Machine Learning

Upper Bound on Dual Costs

Theorem: Let $\mathbf{w} \in \Omega$ be a feasible solution of the primal problem of the previous definition and (α, β) a feasible solution of the respective dual problem. Then $f(\mathbf{w}) \geq \theta(\alpha, \beta)$.

Proof:

$$\begin{aligned} \theta(\boldsymbol{\alpha},\boldsymbol{\beta}) &= \inf_{\mathbf{u}\in\Omega} L(\mathbf{u},\boldsymbol{\alpha},\boldsymbol{\beta}) \\ &\leq L(\mathbf{w},\boldsymbol{\alpha},\boldsymbol{\beta}) \\ &= f(\mathbf{w}) + \sum_{i=1}^{k} \underbrace{\alpha_{i}}_{\geq 0} \underbrace{g_{i}(\mathbf{w})}_{\leq 0} + \sum_{j=1}^{m} \beta_{j} \underbrace{h_{j}(\mathbf{w})}_{=0} \quad \leq f(\mathbf{w}) \end{aligned}$$

The feasibility of \mathbf{w} implies $g_i(\mathbf{w}) \leq 0$ and $h_i(\mathbf{w}) = 0$, while the feasibility of $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ implies $\alpha_i \geq 0$.

Duality Gap

Corollary: The value of the dual problem is upper bounded by the value of the primal problem,

 $\sup \left\{ \theta(\boldsymbol{\alpha}, \boldsymbol{\beta}) : \boldsymbol{\alpha} \ge 0 \right\} \le \inf \left\{ f(\mathbf{w}) : \mathbf{g}(\mathbf{w}) \le 0, \mathbf{h}(\mathbf{w}) = 0 \right\}$

Theorem: The triple $(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ is a saddle point of the Lagrangian function for the primal problem, if and only if its components are optimal solutions of the primal and dual problems and if there is **no duality gap**, i.e., the primal and dual problems having the value

$$f(\mathbf{w}^*) = \theta(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$$

Visual Computing: Joachim M. Buhmann — Machine Learning

202/267

Strong Duality

Theorem: Given an optimization problem with convex objective function f and convex domain $\Omega \subseteq \mathbb{R}^d$,

$$\begin{array}{ll} \text{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega\\ \text{subject to} & g_i(\mathbf{w}) \leq 0, & i = 1, \dots, k\\ & h_i(\mathbf{w}) = 0, & i = 1, \dots, m \end{array}$$

where the g_i and h_i are affine functions, that is

 $\mathbf{h}(\mathbf{w}) = \mathbf{A}\mathbf{w} - \mathbf{b},$

for some matrix \mathbf{A} and vector \mathbf{b} , then the duality gap is zero.

(This case applies to SVMs!)

Remark: If the functions $g_i(\mathbf{w})$ are convex then strong duality holds provided some *constraint qualifications* are fulfilled (e.g. Slater condition).

203/267

205/267

Visual Com

Visual Computing: Joachim M. Buhmann — Machine Learning

Kuhn-Tucker Conditions (1951)

Theorem: Given an optimization problem with convex domain $\Omega \subseteq \mathbb{R}^d$,

 $\begin{array}{ll} \mbox{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega \\ \mbox{subject to} & g_i(\mathbf{w}) \leq 0, & i=1,\ldots,k \\ & h_i(\mathbf{w})=0, & i=1,\ldots,m \end{array}$

with $f \in C^1$ convex and g_i , h_i affine, necessary and sufficient conditions for a normal point \mathbf{w}^* to be an optimum are the existence of α^* , β^* such that

$$\begin{split} \frac{\partial L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \mathbf{w}} &= 0 \qquad \frac{\partial L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}} = 0\\ \alpha_i^* g_i(\mathbf{w}^*) &= 0, \quad g_i(\mathbf{w}^*) \leq 0, \quad \alpha_i^* \geq 0, \quad i = 1, \dots, k \end{split}$$

Support Vector Machines (SVM)

Idea: linear classifier with margin and feature transformation.

Transformation from original feature space to nonlinear feature space.

 $\begin{aligned} \mathbf{y}_i = \phi(\mathbf{x}_i) & \text{e.g. Polynomial, Radial Basis Function, ...} \\ \phi : \mathbb{R}^d \to \mathbb{R}^e \text{ with } d \ll e \\ z_i = \begin{cases} +1 \\ -1 \end{cases} \text{ if } \mathbf{x}_i \text{ in class } \begin{cases} y_1 \\ y_2 \end{cases} \end{aligned}$

Training vectors should be linearly separable after mapping! Linear discriminant function:

 $g(\mathbf{y}) = \mathbf{w}^{\mathsf{T}} \mathbf{y} + w_0$

SVM Lagrangian

Minimize $||\mathbf{w}||$ for a given margin m = 1

minimize
$$\mathcal{T}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

subject to $z_i(\mathbf{w}^{\mathsf{T}}\mathbf{y}_i + w_0) \ge 1$

Generalized Lagrange Function:

$$L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{n} \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 \right]$$

Functional and geometric margin: The problem formulation with margin m = 1 is called the *functional margin* setting; The original formulation refers to the *geometric margin*.

Visual Computing: Joachim M. Buhmann — Machine Learning

Stationarity of Lagrangian

Extremality condition:

$$\begin{array}{lcl} \frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\alpha})}{\partial \mathbf{w}} &=& \mathbf{w} - \sum_{i \leq n} \alpha_i z_i \mathbf{y}_i = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i \leq n} \alpha_i z_i \mathbf{y}_i \\ \frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\alpha})}{\partial w_0} &=& -\sum_{i \leq n} \alpha_i z_i = 0 \end{array}$$

Resubstituting $\frac{\partial L}{\partial \mathbf{w}} = 0, \frac{\partial L}{\partial w_0} = 0$ into the Lagrangian function $L(\mathbf{w}, w_0, \alpha)$

$$\begin{split} L(\mathbf{w}, w_0, \boldsymbol{\alpha}) &= \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i \le n} \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 \right] \\ &= \frac{1}{2} \sum_{i \le n} \sum_{j \le n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j - \sum_{i \le n} \sum_{j \le n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + \sum_{i \le n} \alpha_i \\ &= \sum_{i \le n} \alpha_i - \frac{1}{2} \sum_{i \le n} \sum_{j \le n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j \quad \text{(note the scalar product!)} \end{split}$$

Dual Problem

The Dual Problem for support vector learning is

maximize
$$W(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_i z_j \alpha_i \alpha_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j$$

subject to $\forall i \ \alpha_i \ge 0 \quad \land \quad \sum_{i=1}^{n} z_i \alpha_i = 0$

The optimal hyperplane \mathbf{w}^*, w_0^* is given by

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y}_i, \quad w_0^* = -\frac{1}{2} \left(\min_{i:z_i=1} \mathbf{w}^{*\mathsf{T}} \mathbf{y}_i + \max_{i:z_i=-1} \mathbf{w}^{*\mathsf{T}} \mathbf{y}_i \right)$$

where α^* are the optimal Lagrange multipliers maximizing the Dual Problem.

Visual Computing: Joachim M. Buhmann — Machine Learning

211/267

209/267

Support Vectors

The Kuhn-Tucker Conditions for the maximal margin SVM are

 $\begin{aligned} \alpha_i^*(z_i g^*(\mathbf{y}_i) - 1) &= 0, & i = 1, \dots, n \\ \alpha_i^* &\geq 0, & i = 1, \dots, n \\ z_i g^*(\mathbf{y}_i) - 1 &\geq 0, & i = 1, \dots, n \end{aligned}$

The first one is known as the **Kuhn-Tucker complementary condition**. The conditions imply

 $z_i g^*(\mathbf{y}_i) = 1 \implies \alpha_i^* \ge 0$ Support Vectors (SV) $z_i g^*(\mathbf{y}_i) \ne 1 \implies \alpha_i^* = 0$ Non Support Vectors

Soft Margin SVM For each trainings vector $\mathbf{y}_i \in \mathcal{Y}$ a **slack variable** ξ_i is introdu-

Find hyperplane that maximizes the margin $z_i g^*(\mathbf{y}_i) \ge m(1-\xi_i)$

Vectors \mathbf{y}_i with $z_i g^*(\mathbf{y}_i) = m(1-\xi_i)$ are called **support vectors**.

ced to measure the violation of the margin constraint.

Visual Computing: Joachim M. Buhmann — Machine Learning

Optimal Decision Function

Sparsity:

$$g^*(\mathbf{y}) = \mathbf{w}^{*\mathsf{T}}\mathbf{y} + w_0^* = \sum_{i=1}^n z_i \alpha_i^* \mathbf{y}_i^{\mathsf{T}} \mathbf{y} + w_0^*$$
$$= \sum_{i \in \mathsf{SV}} z_i \alpha_i^* \mathbf{y}_i^{\mathsf{T}} \mathbf{y} + w_0^*$$

Remark: only few support vectors enter the sum to evaluate the decision function! \Rightarrow efficiency and interpretability

Optimal margin: $\mathbf{w}^{\mathsf{T}}\mathbf{w} = \sum_{i \in \mathsf{SV}} \alpha_i^*$

Visual Computing: Joachim M. Buhmann — Machine Learning

Learning the Soft Margin SVM

Slack variables are penalized by L_1 norm.

minimize
$$\mathcal{T}(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_i$$

subject to $z_i(\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) \geq 1 - \xi_i$
 $\xi_i \geq 0$

C controls the amount of constraint violations vs. margin maximization!

Lagrange function for soft margin SVM

$$\begin{split} L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) &= \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} + C \sum_{i=1}^n \xi_i \\ &- \sum_{i=1}^n \alpha_i \left[z_i (\mathbf{w}^\mathsf{T} \mathbf{y}_i + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \beta_i \xi_i \end{split}$$

Stationarity of Primal Problem

Differentiation:

$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^n \alpha_i z_i \mathbf{y}_i = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^n \alpha_i z_i \mathbf{y}_i$$
$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \xi_i} = C - \alpha_i - \beta_i = 0 \quad \frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial w_0} = -\sum_{i=1}^n \alpha_i z_i = 0$$

Resubstituting into the Lagrangian function $L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ yields

$$\begin{split} L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) &= \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} + C \sum_{i=1}^n \xi_i \\ &- \sum_{i=1}^n \alpha_i \left[z_i (\mathbf{w}^\mathsf{T} \mathbf{y}_i + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \beta_i \xi_i \end{split}$$

$$L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + \sum_{i=1}^{n} \alpha_i (1 - \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + \sum_{i=1}^{n} (C - \alpha_i - \beta_i) \xi_i = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j$$

Constaints of the Dual Problem

The dual objective function is the same as for the maximal margin SVM. The only difference is the constraint

$$C - \alpha_i - \beta_i = 0$$

Together with $\beta_i \ge 0$ it implies

$$\alpha_i \le C$$

The Kuhn-Tucker complementary conditions

$$\alpha_i(z_i(\mathbf{w}^{\mathsf{T}}\mathbf{y}_i + w_0) - 1 + \xi_i) = 0, \qquad i = 1, \dots, n$$

$$\xi_i(\alpha_i - C) = 0, \qquad i = 1, \dots, n$$

imply that nonzero slack variables can only occur when $\alpha_i = C$.

218/267

Visual Computing: Joachim M. Buhmann — Machine Learning

Dual Problem of Soft Margin SVM

The Dual Problem for support vector learning is

maximize
$$W(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_i z_j \alpha_i \alpha_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j$$

subject to $\sum_{i=1}^{n} z_j \alpha_j = 0 \land \forall i \ C \ge \alpha_i \ge 0$

The optimal hyperplane \mathbf{w}^* is given by

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y}_i$$

where α^* are the optimal Lagrange multipliers maximizing the Dual Problem.

 $\alpha_i^* > 0$ holds only for **support vectors**.

Linear Programming Support Vector Machines

Idea: Minimize an estimate of the number of positive multipliers $\sum_{i=1}^{n} \alpha_i$ which improves bounds on the generalization error.

The Lagrangian for the LP-SVM is

$$\begin{array}{ll} \mbox{minimize} & W(\boldsymbol{\alpha}, \boldsymbol{\xi}) = \sum_{i=1}^{n} \alpha_i + C \sum_{i=1}^{n} \xi_i \\ \mbox{subject to} & z_i \left[\sum_{j=1}^{n} \alpha_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j + w_0 \right] \geq 1 - \xi_i, \\ & \alpha_i \geq 0, \ \xi_i \geq 0, \ 1 \leq i \leq n \end{array}$$

Advantage: efficient LP solver can be used.

Disadvantage: theory is not as well understood as for standard SVMs.

Visual Computing: Joachim M. Buhmann — Machine Learning

221/267

Non–Linear SVMs

Feature extraction by non linear transformation $\mathbf{y} = \phi(\mathbf{x})$ Problem:

$$\mathbf{y}_i^\mathsf{T} \mathbf{y}_i = \phi^\mathsf{T}(\mathbf{x}_i)\phi(\mathbf{x}_i)$$

is the inner product in a high dimensional space.

A kernel function is defined by

Visual Computing: Joachim M. Buhmann — Machine Learning

$$\forall \mathbf{x}, \mathbf{z} \in \Omega : \quad K(\mathbf{x}, \mathbf{z}) = \phi^{\mathsf{T}}(\mathbf{x})\phi(\mathbf{z})$$

Using the kernel function the discriminant function becomes

$$g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i z_i \underbrace{K(\mathbf{x}_i, \mathbf{x})}_{\text{replaces } \mathbf{y}_i^{\mathsf{T}} \mathbf{y}}$$

222/267

Characterization of Kernels

For any symmetric matrix $K(\mathbf{x}_i, \mathbf{x}_j)|_{i,j=1}^n$ (Gram matrix) there exists an eigenvector decomposition

$$K = V \Lambda V^{\mathsf{T}}$$
.

V: orthogonal matrix of eigenvectors $(v_{ti})|_{i=1}^{n}$ Λ: diagonal matrix of eigenvalues λ_t

Assume all eigenvalues are nonnegative and consider mapping

$$\phi: \mathbf{x}_i \to \left(\sqrt{\lambda_t} v_{ti}\right)_{t=1}^n \in \mathbb{R}^n, i = 1, \dots, n$$

Then it follows

$$\phi^{\mathsf{T}}(\mathbf{x}_i)\phi(\mathbf{x}_j) = \sum_{t=1}^n \lambda_t v_{ti} v_{tj} = \left(V\Lambda V^{\mathsf{T}}\right)_{ij} = K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$$

Visual Computing: Joachim M. Buhmann — Machine Learning

Positivity of Kernels

Theorem: Let Ω be a finite input space with $K(\mathbf{x}, \mathbf{z})$ a symmetric function on Ω . Then $K(\mathbf{x}, \mathbf{z})$ is a kernel function if and only if the matrix

$$K = (K(\mathbf{x}_i, \mathbf{x}_j))_{i,j=1}^n$$

is positive semi-definite (has only non-negative eigenvalues).

Extension to infinite dimensional Hilbert Spaces:

$$<\phi(\mathbf{x}),\phi(\mathbf{z})>=\sum_{i=1}^{\infty}\lambda_i\phi_i(\mathbf{x})\phi_i(\mathbf{z})$$

Visual Computing: Joachim M. Buhmann — Machine Learning

224/267

Mercer's Theorem

Theorem (Mercer): Let Ω be a compact subset of \mathbb{R}^n . Suppose K is a continuous symmetric function such that the integral operator $T_K: L_2(X) \to L_2(X)$,

$$(T_K f)(\cdot) = \int_{\Omega} K(\cdot, \mathbf{x}) f(\mathbf{x}) d\mathbf{x},$$

is positive, that is $\int_{\Omega\times\Omega} K(\mathbf{x},\mathbf{z}) f(\mathbf{x}) f(\mathbf{z}) d\mathbf{x} d\mathbf{z} > 0 \quad \forall f \in L_2(\Omega)$ Then we can expand $K(\mathbf{x}, \mathbf{z})$ in a uniformly convergent series in terms of T_K 's eigen-functions $\phi_j \in L_2(\Omega)$, with $||\phi_j||_{L_2} = 1$ and $\lambda_i > 0$.

Possible Kernels

Remark: Each kernel function, that hold Mercer's conditions describes an inner product in a high dimensional space. The kernel function replaces the inner product.

Possible Kernels:

a)
$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{||\mathbf{x} - \mathbf{z}||^2}{2\sigma^2}\right)$$
 (RBF Kernel)
b) $K(\mathbf{x}, \mathbf{z}) = \tanh \kappa \mathbf{x} \mathbf{z} - b$ (Sigmoid Kernel)
c) $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \mathbf{z})^d$ (Polynomial Kernel)
 $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \mathbf{z} + 1)^d$
d) $K(\mathbf{x}, \mathbf{z})$: string kernels for sequences
computing: Joachim M. Buhman – Machine Learning 220/267

223/267

Kernel Engineering

Kernel composition rules: Let K_1, K_2 be kernels over $\Omega \times \Omega, \Omega \subseteq \mathbb{R}^d, a \in \mathbb{R}^+, f(.)$ a real-vealued function $\phi : \Omega \to \mathbb{R}^e$ with K_3 a kernel over $\mathbb{R}^e \times \mathbb{R}^e$.

Then the following functions are kernels:

1. $K(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z}) + K_2(\mathbf{x}, \mathbf{z})$,

- 2. $K(\mathbf{x}, \mathbf{z}) = aK_1(\mathbf{x}, \mathbf{z}),$
- **3.** $K(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z})K_2(\mathbf{x}, \mathbf{z})$,
- 4. $K(\mathbf{x}, \mathbf{z}) = f(\mathbf{x})f(\mathbf{z}),$
- 5. $K(\mathbf{x}, \mathbf{z}) = K_3(\phi(\mathbf{x}), \phi(\mathbf{z})),$
- 6. $K({\bf x},{\bf z})=p(K_1({\bf x},{\bf z})),$ (p(x) is a polynomial with positive coefficients)

227/267

7. $K(\mathbf{x}, \mathbf{z}) = \exp(K_1(\mathbf{x}, \mathbf{z}))$,

Visual Computing: Joachim M. Buhmann — Machine Learning

<section-header><section-header><section-header><image><image>

Example: Hand Written Digit Recognition											
 7291 training images und 2007 test images (16x16 pixel, 256 gray values) 											
	٥	ı	2	з	4	5	6	7	£	9	
	٥	ł	a	з	4	5	6	7	ዩ	9	
	ø	١	2	3	4	5	6	2	8	9	
Classification methodtehuman classification2.perceptron5.support vector machines4.									<u>r</u>		
Visual Computing: Joachim M. Buhmann — Machine Learning 229/267							267				

SVMs for Secondary Structure Prediction

Proteins are represented in "zeroth order" by the percentage of amino-acids in the polypeptide chain; \rightsquigarrow "vectorial" representation in \mathbb{R}^{20}

Protein structure problem: sequence as primary structure, local motives as secondary structure, protein folds as ternary structure.

SVM classification typically use the RBF kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\gamma \|\mathbf{x} - \mathbf{y}\|^2\right)$$

Secondary structure prediction as a multiclass problem: Detect classes *helix (H)*, *sheet (E)* and *coil (C)*

230/267

Feature set: Common features are

- · distribution of the spectrum
- tonality
- rhythm
- estimated signal to noise ratio (SNR)
- ... and others

Strong computational constraints in the hearing aid!

- Very little computational power and memory is available.
- Delay must not exceed a few ten miliseconds
- \rightarrow Complex features can only be approximated.

237/267

25

20

14 Rate

10 Error

8

238/267

VM, RBF kernel

Classification Quality for different Classifiers

Error Rates for Different Classifiers

best HMM and rules-based sparse (LASSO) ense linear (LASSO) ense linear (LASSO)

Bayes, 15 Intervals 2:layer erceptron, 8 hidden nodes Ergodic HMM

Unsupervised learning

Examples:

- Data clustering. (Some authors do not distinguish between clustering and unsupervised learning.)
- Dimension reduction techniques.

Data clustering: Divide input data into groups of similar points.

 \rightarrow Roughly the unsupervised counterpart to classification.

Note the difference:

- Supervised case: Fit model to each class of training points, then use models to classify test points.
- Clustering: Simultaneous inference of group structure and model.

Visual Computing: Joachim M. Buhmann — Machine Learning

Grouping or Clustering: the *k***-Means Problem**

Given are *d*-dimensional sample vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$ Define ...

- ... assignment vector $c \in \{1, \ldots, k\}^n$
- ... prototypes $\mathbf{y}_{\nu} \in \mathcal{Y} \subset \mathbb{R}^d$ ($\nu \in \{1, \dots, k\}$)

Problem: Find *c* and \mathbf{y}_{ν} such that the clustering costs are minimized ($c_i := c(\mathbf{x}_i)$)

$$R^{\mathsf{km}}(c, \mathcal{Y}) = \sum_{i=1}^{n} ||\mathbf{x}_i - \mathbf{y}_{c_i}||^2$$

Mixed combinatorial and continuous optimization problem

Visual Computing: Joachim M. Buhmann — Machine Learning

k-Means Algorithm

- 1. Choose k sample objects randomly as prototypes, i.e., select $\mathcal{Y} = {\mathbf{x}_1, \dots, \mathbf{x}_k}$
- 2. Iterate:
 - Keep prototypes \mathbf{y}_{c_i} fixed and assign sample vectors \mathbf{x}_i to nearest prototype

$$c_i = \arg\min_{\nu \in \{1,\dots,k\}} ||\mathbf{x}_i - \mathbf{y}_{c_i}||^2$$

• Keep assignments c_i fixed and estimate prototypes

$$\mathbf{y}_{\nu} = \frac{1}{n_{\nu}} \sum_{i:c_i = \nu} \mathbf{x}_i \text{ with } n_{\nu} = |\{i:c_i = \nu\}|$$

Visual Computing: Joachim M. Buhmann — Machine Learning

245/267

Mixture models	Mixture models: Interpretation					
Def.: A finite mixture model is a probability density of the form	Recall: Addition on probabilities \leftrightarrow logical OR.					
$p\left(x\right)=\sum_{j=1}^{l}c_{j}p_{j}\left(x\right)$ where the p_{j} are probability densities on a common domain $\Omega,c_{j}\geq0$ constants and $\sum_{j}c_{j}=1.$	 Represented data source: Source = set of component sources (modeled by the <i>p_j</i>) Each data value is drawn from exactly one component source. <i>c_j</i>: Probability of draw from <i>p_j</i>. 					
 Remarks: <i>p</i> is a density on Ω. If all components are parametric models, then so is <i>p</i>. Most common: Gaussian mixture, p_j (x) := g (x μ_j, σ_j). 	Application to clustering: Natural model if1. each data point belongs to exactly one group.2. we have some idea what the group densities look like.					
Visual Computing: Joachim M.Buhmann — Machine Learning 247/267	Visual Computing: Joachim M. Buhmann — Machine Learning 248/267					

Expectation-Maximization algorithm

Estimate Gaussian mixture from data values x_1, \ldots, x_n .

Approach: Regard class assignments as random variables.

Notation: Assignment variables $M_{ij} := \begin{cases} 1 & x_i \text{ drawn from } p_j \\ 0 & \text{otherwise} \end{cases}$

Algorithm: Iterates two steps:

- E-step: Estimate expected values for M_{ij} from current model configuration.
- **M-step:** Estimate model parameters from current assignment probabilities E [*M_{ij}*].

This will require some more explanation.

```
Visual Computing: Joachim M. Buhmann — Machine Learning
```

Gaussian mixture: E-step

Current model parameters: $\tilde{\boldsymbol{\theta}} = (\tilde{\mathbf{c}}, \tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\sigma}})$ (from last M-step)

Compute expectations:

$$\begin{split} \mathsf{E}\left[M_{ij} \left| \mathbf{x}, \tilde{\boldsymbol{\theta}} \right] &= \mathsf{Pr}\{x_i \text{ was drawn from } p_j\} \\ &= \frac{c_j p(x_i | \tilde{\theta}_j)}{\sum_{k=1}^l c_k p(x_i | \tilde{\theta}_k)} = \frac{c_j g\left(x_i | \tilde{\mu}_j, \tilde{\sigma}_j\right)}{\sum_{k=1}^l c_k g\left(x_i | \tilde{\mu}_k, \tilde{\sigma}_k\right)} \end{split}$$

Jargon: The binary assignments ("hard assignments") are *relaxed* to values $E[M_{ij}] \in [0, 1]$ ("soft assignments").

Gaussian mixture: M-step

Task: Estimate model parameters given assignments.

Easy for hard assignments:

- Select all x_i with $M_{ij} = 1$.
- Perform ML estimation on this data subset.

Can we do it for soft assignments? The log-likelihood is

$$l_{\mathbf{M}}(\theta) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{l} M_{ij} c_j g\left(x_i | \mu_j, \sigma_j \right) \right)$$

Technical problem: We want to substitute expected values for M_{ij} . We can apply an expectation to $l_{\mathbf{M}}$, but how do we get it into the log?

Visual Computing: Joachim M. Buhmann — Machine Learning

253/267

251/267

Gaussian mixture: M-step

Trick: (This is a true classic.)

Visual Computing: Joachim M. Buhmann — Machine Learning

$$\sum_{i=1}^{n} \log \left(\sum_{j=1}^{l} M_{ij} c_j g\left(x_i | \mu_j, \sigma_j \right) \right) = \sum_{i=1}^{n} \sum_{j=1}^{l} M_{ij} \log \left(c_j g\left(x_i | \mu_j, \sigma_j \right) \right)$$

Explanation: For all *i*, $M_{ij_0} = 1$ for exactly one j_0 . So:

$$\log\left(\sum_{j=1}^{l} M_{ij} f_{j}\right) = \log(f_{j_{0}}) = M_{ij_{0}} \log(f_{j_{0}}) = \sum_{j} M_{ij} \log(f_{j})$$

Note: This introduces an error, because it is only valid for hard assignments. We relax assignments, and relaxation differs inside and outside logarithm.

Visual Computing: Joachim M. Buhmann — Machine Learning

254/267

252/267

Gaussian mixture: M-step

Expected log-likelihood:

$$\begin{split} \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\theta}}\left[l\left(\theta\right)\right] &= \mathsf{E}\left[\sum_{i=1}^{n}\sum_{j=1}^{l}M_{ij}\log\left(c_{j}g\left(x_{i}|\mu_{j},\sigma_{j}\right)\right)\right] \\ &= \sum_{i=1}^{n}\sum_{j=1}^{l}\mathsf{E}\left[M_{ij}\right]\log\left(c_{j}g\left(x_{i}|\mu_{j},\sigma_{j}\right)\right) \\ &= \underbrace{\sum_{i,j}\mathsf{E}\left[M_{ij}\right]\log\left(c_{j}\right)}_{1} + \underbrace{\sum_{i,j}\mathsf{E}\left[M_{ij}\right]\log\left(g\left(x_{i}|\mu_{j},\sigma_{j}\right)\right)}_{2} \end{split}$$

- Substitute E-step results for $E[M_{ij}]$.
- Maximize (1) and (2) separately w. r. t. c_j and μ_j, σ_j .

Gaussian mixture: M-step

Maximizing (1):

 $c_j := \frac{1}{n} \sum_{i} \mathsf{E}\left[M_{ij}\right]$

Maximizing (2): For 1D Gaussian model, analytic maximization gives

$$\begin{split} \tilde{\mu}_j &= \frac{\sum_{i=1}^n x_i \mathsf{E}\left[M_{ij}\right]}{\sum_{i=1}^n \mathsf{E}\left[M_{ij}\right]} \\ \tilde{\sigma}_j^2 &= \frac{\sum_{i=1}^n (x_i - \tilde{\mu}_j)^2 \mathsf{E}\left[M_{ij}\right]}{\sum_{i=1}^n \mathsf{E}\left[M_{ij}\right]} \end{split}$$

 \rightarrow weighted form of the standard ML estimators.

EM algorithm: Summary	EM: General case				
 Notation: Q(θ, θ) := E_{M x,θ} [l_M (θ)] EM algorithm: E-step: Substitute current parameter estimates θ into model. Estimate expectations E [M_{ij}]. Substitute estimates into log-likelihood. This gives Q as function of θ. M-step: Parameter estimation: Maximize Q(θ, θ) w. r. t. θ. Observation: This does not seem to be limited to a specific model (like Gaussian mixtures). Can it be generalized? 	 When can EM be applied? If we can define hidden variables M such that The joint density p (x, M θ) is known. Expected values of the hidden variables can be estimated from a given model configuration. Given estimates for the hidden variables, ML estimation is possible. When do we want to apply EM for ML estimation? If ML is hard for p (x θ) WL is easy for p (x, M θ) when we know M. we can efficiently compute expectations for M. 				
Visual Computing: Joachim M. Buhmann — Machine Learning 257/267	Visual Computing: Joachim M. Buhmann — Machine Learning 258/267				

The two log-likelihoods

The density of the augmented data (\mathbf{x},\mathbf{M}) is:

$$p(\mathbf{x}, \mathbf{M}|\boldsymbol{\theta}) = p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta}) p(\mathbf{x}|\boldsymbol{\theta})$$

This means we deal with two different log-likelihoods:

• The one we are actually interested in:

 $l(\boldsymbol{\theta}) = \log\left(p(\mathbf{x}|\boldsymbol{\theta})\right)$

• The one including the hidden variables:

$$l_{\mathbf{M}}(\boldsymbol{\theta}) = \log\left(p\left(\mathbf{x}, \mathbf{M} | \boldsymbol{\theta}\right)\right)$$

 $l\left(\pmb{ heta}
ight)$ is constant w. r. t. the expectation $\mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\pmb{ heta}}}\left[\,.\,
ight]$ in the algorithm. $l_{\mathbf{M}}(\boldsymbol{\theta})$ is dependent on hidden variables **M**.

Visual Computing: Joachim M. Buhmann — Machine Learning

259/267

Proof of Convergence

What we want to show: $l(\boldsymbol{\theta}) > l(\tilde{\boldsymbol{\theta}})$.

Rewrite $l(\theta)$ using definition of conditional prob.:

$$l(\boldsymbol{\theta}) = \log \left(p(\mathbf{x}|\boldsymbol{\theta}) \right) = \log \left(\frac{p(\mathbf{x}, \mathbf{M}|\boldsymbol{\theta})}{p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta})} \right)$$
$$= l_{\mathbf{M}}(\boldsymbol{\theta}) - \log \left(p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta}) \right)$$

Apply the expectation:

$$\begin{split} \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[l\left(\boldsymbol{\theta}\right)\right] &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[l_{\mathbf{M}}\left(\boldsymbol{\theta}\right)\right] - \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\boldsymbol{\theta}\right)\right)\right] \\ \Leftrightarrow \quad l\left(\boldsymbol{\theta}\right) &= Q(\boldsymbol{\theta},\tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\boldsymbol{\theta}\right)\right)\right] \end{split}$$

260/267

Visual Computing: Joachim M. Buhmann — Machine Learning

Proof of convergence Proof of convergence Summary: $l\left(\boldsymbol{\theta}\right) \ = \ Q(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M} \mid \mathbf{x}, \tilde{\boldsymbol{\theta}}} \left[\log\left(p\left(\mathbf{M} \mid \mathbf{x}, \boldsymbol{\theta}\right)\right) \right]$ $> Q(\tilde{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M} | \mathbf{x}, \tilde{\boldsymbol{\theta}}} \left[\log \left(p \left(\mathbf{M} | \mathbf{x}, \tilde{\boldsymbol{\theta}} \right) \right) \right]$ $= l(\tilde{\boldsymbol{\theta}})$ We're done, except for (*). **Proof of** (*): Use Jensen's inequality: If f is a convex function then $\mathsf{E}[f(X)] \ge f(\mathsf{E}[X])$ for any RV X. The log function is concave, so $\mathsf{E}[\log(X)] \leq \log(\mathsf{E}[X]).$ Visual Computing: Joachim M. Buhmann — Machine Learning 261/267 Visual Computing: Joachim M. Buhmann — Machine Learning 262/267

We want to show that this is larger than

$$l(\tilde{\boldsymbol{\theta}}) = Q(\tilde{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M}|\mathbf{x}, \tilde{\boldsymbol{\theta}}} \left[\log \left(p\left(\mathbf{M}|\mathbf{x}, \tilde{\boldsymbol{\theta}}\right) \right) \right]$$

First term Q: Two possibilities,

- 1. Q is already maximal (algorithm converged).
- 2. Otherwise: $Q(\boldsymbol{\theta}, \boldsymbol{\tilde{\theta}}) > Q(\boldsymbol{\tilde{\theta}}, \boldsymbol{\tilde{\theta}})$.

For the second term holds:

$$\mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}\right)\right)\right] \geq \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\boldsymbol{\theta}\right)\right)\right] \quad (*)$$

Abbreviate
$$p := p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta})$$
 and $\tilde{p} := p(\mathbf{M}|\mathbf{x}, \tilde{\boldsymbol{\theta}})$.

$$\begin{aligned} \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\right)\right] &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\frac{p}{\tilde{p}}\cdot\tilde{p}\right)\right] \\ &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\frac{p}{\tilde{p}}\right)\right] + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &\leq \log\left(\mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\frac{p}{\tilde{p}}\right]\right) + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &= \log\left(\sum\tilde{p}\cdot\frac{p}{\tilde{p}}\right) + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &= \log\left(\sum_{i=1}^{\infty}p\right) + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \qquad \Box \end{aligned}$$

Convergence results

Theoretical convergence guarantees:

- What we have shown above: The log-likelihood increases with each iteration. This does not imply convergence to local maximum.
- For sufficiently regular log-likelihoods, the algorithm always converges to a *local* maximum of the log-likelihood.

What can go wrong: Like any gradient-type algorithm, it can get stuck in a saddle point or even a local minimum. Note:

- This is a *scale problem*. It happens when the gradient step is too large to resolve a local maximum and oversteps.
- Can be prevented by requiring regularity conditions.
- Only happens for numerical M-step.

Visual Computing: Joachim M. Buhmann — Machine Learning

Convergence in practice

Hard to analyze:

- Cost function (log-likelihood) changes between steps.
- Influence of hidden variables is not entirely understood.

Local minima/saddle points: Convergence to these points is a theoretical possibility, but usually not a practical problem.

Worst problem: Initialization. EM results tend to be highly dependent on initial values.

Common strategy: Initialize with random values. Rerun algorithm several times and choose solution which has the largest likelihood.

```
Visual Computing: Joachim M. Buhmann — Machine Learning
```

265/267

k-Means algorithm

Simplify Gaussian mixture model EM:

- 1. Assume that all Gaussians have the same variance.
- 2. Use hard assignments instead of expectations.

Resulting algorithm: Alternate steps

- 1. For each class, choose all assigned data values and average them. (\rightarrow ML estimation of Gaussian mean for hard assignments.)
- 2. Assign each value to class under which its probability of occurrence is largest.

Hence the name: For k classes, algorithm iteratively adjust means (= class averages).

Visual Computing: Joachim M. Buhmann — Machine Learning

266/267

264/267

Some history

EM: Introduced by Dempster, Laird and Rubin in 1977. Previously known as Baum-Welch algorithm for Hidden Markov Models.

k-Means: Also known as Lloyd-Max-Algorithm in vector quantization. In 1973, Bezdek introduced a 'fuzzy' version of *k*-Means which comes very close to EM for mixture models.

EM convergence: Dempster, Laird and Rubin proved a theorem stating that EM always converges to a local maximum, but their proof was wrong. In 1983, Wu gave a number of regularity conditions sufficient to ensure convergence to a local maximum.