
Support Vector Machine (SVM)

Extending the perceptron idea: use a linear classifier with
margin and a non-linear feature transformation.

m
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Nonlinear Transformation in Kernel Space

x1

x2

z1

z3

z2
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Lagrangian Optimization Theory

Optimization under constraints (Primal Problem):

Given an optimization problem with domain Ω ⊆ R
d,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , m

The generalized Lagrangian function is defined as

L(w, α, β) = f(w) +
k∑

i=1

αigi(w) +
m∑

i=1

βihi(w)
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Lagrangian Dual Problem (1797)

Definition (Langrangian Dual Problem):

The respective Lagrangian dual problem is given by

maximize θ(α, β),
subject to αi ≥ 0, i = 1, . . . , k

where θ(α, β) = inf
w∈Ω

L(w, α, β)

The value of the objective function at the optimal solution is
called the value of the problem.

The difference between the values of the primal and the dual
problems is known as the duality gap.
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Upper Bound on Dual Costs

Theorem: Let w ∈ Ω be a feasible solution of the primal pro-
blem of the previous definition and (α, β) a feasible solution
of the respective dual problem. Then f(w) ≥ θ(α, β).

Proof:

θ(α, β) = inf
u∈Ω

L(u, α, β)

≤ L(w, α, β)

= f(w) +
k∑

i=1

αi︸︷︷︸
≥0

gi(w)︸ ︷︷ ︸
≤0

+
m∑

j=1

βj hj(w)︸ ︷︷ ︸
=0

≤ f(w)

The feasibility of w implies gi(w) ≤ 0 and hi(w) = 0, while
the feasibility of (α, β) implies αi ≥ 0.
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Duality Gap

Corollary: The value of the dual problem is upper bounded
by the value of the primal problem,

sup {θ(α, β) : α ≥ 0} ≤ inf {f(w) : g(w) ≤ 0,h(w) = 0}

Theorem: The triple (w∗, α∗, β∗) is a saddle point of the La-
grangian function for the primal problem, if and only if its
components are optimal solutions of the primal and dual pro-
blems and if there is no duality gap, i.e., the primal and dual
problems having the value

f(w∗) = θ(α∗, β∗)
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Strong Duality

Theorem: Given an optimization problem with convex objec-
tive function f and convex domain Ω ⊆ R

d,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , m

where the gi and hi are affine functions, that is

h(w) = Aw − b,

for some matrix A and vector b, then the duality gap is zero.
(This case applies to SVMs!)

Remark: If the functions gi(w) are convex then strong duality holds pro-
vided some constraint qualifications are fulfilled (e.g. Slater condition).
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Kuhn-Tucker Conditions (1951)

Theorem: Given an optimization problem with convex do-
main Ω ⊆ R

d,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , m

with f ∈ C1 convex and gi, hi affine, necessary and sufficient
conditions for a normal point w∗ to be an optimum are the
existence of α∗, β∗ such that

∂L(w∗, α∗, β∗)
∂w

= 0
∂L(w∗, α∗, β∗)

∂β
= 0

α∗
i gi(w∗) = 0, gi(w∗) ≤ 0, α∗

i ≥ 0, i = 1, . . . , k
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Support Vector Machines (SVM)

Idea: linear classifier with margin and feature transformation.

Transformation from original feature space to nonlinear fea-
ture space.

yi =φ(xi) e.g. Polynomial, Radial Basis Function, ...

φ : R
d→ R

e with d� e

zi =
{

+1
−1

if xi in class
{

y1

y2

Training vectors should be linearly separable after mapping!

Linear discriminant function:

g(y) = wTy + w0
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Support Vector Machine (SVM)

Find hyperplane that maximizes the margin m with

zi g(yi) = zi(wTy + w0) ≥ m for all yi ∈ Y

m

Vectors yi with zig(yi) = m are the support vectors.
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Maximal Margin Classifier

Invariance: assume that the weight vector w is normalized
(‖w‖ = 1) since a rescaling (w, w0) ← (λw, λw0), m ← λm

does not change the problem.

Condition: zi =

{
+1 wTyi + w0 ≥ m

−1 wTyi + w0 ≤ −m
∀i

Objective: maximize margin m s.t. joint condition
zi (wTyi + w0) ≥ m is met.

Learning problem: Find w with ||w|| = 1, such that the margin
m is maximized.

maximize m

subject to ∀yi ∈ Y : zi(wTyi + w0) ≥ m
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SVM Learning
What is the margin m ?

Consider two points y+,y−

of class 1,2 which are located
on both sides of the margin
boundaries.

Transformation of objective:
rescaling w← w

m, w0 ← w0
m ⇒

yields the constraints

zi(wTyi + w0) ≥ 1

Margin:

m = 1
2‖w‖(w

Ty+−wTy−) = 1
‖w‖

y+

y

y+ y

y1

y2

m

w

m = 1
‖w‖ follows from inserting ±(wTy± + w0) = 1

⇒ maximizing the margin corresponds to minimizing the norm ||w|| for mar-

gin m = 1.
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SVM Lagrangian

Minimize ||w|| for a given margin m = 1

minimize T (w) = 1
2w

Tw
subject to zi(wTyi + w0) ≥ 1

Generalized Lagrange Function:

L(w, w0, α) =
1
2
wTw −

n∑
i=1

αi

[
zi(wTyi + w0)− 1

]

Functional and geometric margin: The problem formulation
with margin m = 1 is called the functional margin setting;
The original formulation refers to the geometric margin.
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Stationarity of Lagrangian
Extremality condition:

∂L(w, w0, α)
∂w

= w −
∑
i≤n

αiziyi = 0 ⇒ w =
∑
i≤n

αiziyi

∂L(w, w0, α)
∂w0

= −
∑
i≤n

αizi = 0

Resubstituting ∂L
∂w = 0, ∂L

∂w0
= 0 into the Lagrangian function L(w, w0, α)

L(w, w0, α) =
1
2
wTw −

∑
i≤n

αi

[
zi(wTyi + w0)− 1

]

=
1
2

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj −

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj +

∑
i≤n

αi

=
∑
i≤n

αi − 1
2

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj (note the scalar product!)

Visual Computing: Joachim M. Buhmann — Machine Learning 210/267

Dual Problem

The Dual Problem for support vector learning is

maximize W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 zizjαiαjyT

i yj

subject to ∀i αi ≥ 0 ∧ ∑n
i=1 ziαi = 0

The optimal hyperplane w∗, w∗
0 is given by

w∗ =
n∑

i=1

α∗
i ziyi, w∗

0 = −1
2

(
min

i:zi=1
w∗Tyi + max

i:zi=−1
w∗Tyi

)

where α∗ are the optimal Lagrange multipliers maximizing the
Dual Problem.
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Support Vectors

The Kuhn-Tucker Conditions for the maximal margin SVM are

α∗
i (zig

∗(yi)− 1) = 0, i = 1, . . . , n

α∗
i ≥ 0, i = 1, . . . , n

zig
∗(yi)− 1 ≥ 0, i = 1, . . . , n

The first one is known as the Kuhn-Tucker complementary
condition. The conditions imply

zig
∗(yi) = 1 ⇒ α∗

i ≥ 0 Support Vectors (SV)

zig
∗(yi) = 1 ⇒ α∗

i = 0 Non Support Vectors
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Optimal Decision Function

Sparsity:

g∗(y) = w∗Ty + w∗
0 =

n∑
i=1

ziα
∗
iyi

Ty + w∗
0

=
∑
i∈SV

ziα
∗
iyi

Ty + w∗
0

Remark: only few support vectors enter the sum to evaluate
the decision function! ⇒ efficiency and interpretability

Optimal margin: wTw =
∑
i∈SV

α∗
i
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Soft Margin SVM

For each trainings vector yi ∈ Y a slack variable ξi is introdu-
ced to measure the violation of the margin constraint.

Find hyperplane that maximizes the margin zig
∗(yi) ≥ m(1−ξi)

m

Vectors yi with zig
∗(yi) = m(1−ξi) are called support vectors.
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Learning the Soft Margin SVM

Slack variables are penalized by L1 norm.

minimize T (w, ξ) = 1
2w

Tw + C
∑n

i=1 ξi

subject to zi(wTyi + w0) ≥ 1− ξi

ξi ≥ 0

C controls the amount of constraint violations vs. margin maximization!

Lagrange function for soft margin SVM

L(w, w0, ξ, α, β) =
1
2
wTw + C

n∑
i=1

ξi

−
n∑

i=1

αi

[
zi(wTyi + w0)− 1 + ξi

]
−

n∑
i=1

βiξi
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Stationarity of Primal Problem

Differentiation:

∂L(w, w0, ξ, α, β)
∂w

= w −
n∑

i=1

αiziyi = 0 ⇒ w =
n∑

i=1

αiziyi

∂L(w, w0, ξ, α, β)
∂ξi

= C − αi − βi = 0
∂L(w, w0, ξ, α, β)

∂w0
= −

n∑
i=1

αizi = 0

Resubstituting into the Lagrangian function L(w, w0, ξ, α, β)
yields

L(w, w0, ξ, α, β) = 1
2w

Tw + C
∑n

i=1 ξi

− ∑n
i=1 αi

[
zi(wTyi + w0)− 1 + ξi

]−∑n
i=1 βiξi
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L(w, w0, ξ, α, β) = 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj + C
∑n

i=1 ξi

−∑n
i=1

∑n
j=1 αiαjzizjyT

i yj

+
∑n

i=1 αi(1− ξi)−
∑n

i=1 βiξi

=
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj

+
∑n

i=1(C − αi − βi︸ ︷︷ ︸
=∂L

∂ξi
=0

)ξi

=
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj
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Constaints of the Dual Problem

The dual objective function is the same as for the maximal mar-
gin SVM. The only difference is the constraint

C − αi − βi = 0

Together with βi ≥ 0 it implies

αi ≤ C

The Kuhn-Tucker complementary conditions

αi(zi(wTyi + w0)− 1 + ξi) = 0, i = 1, . . . , n

ξi(αi − C) = 0, i = 1, . . . , n

imply that nonzero slack variables can only occur when αi = C.
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Dual Problem of Soft Margin SVM

The Dual Problem for support vector learning is

maximize W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 zizjαiαjyT

i yj

subject to
∑n

j=1 zjαj = 0 ∧ ∀i C ≥ αi ≥ 0

The optimal hyperplane w∗ is given by

w∗ =
n∑

i=1

α∗
i ziyi

where α∗ are the optimal Lagrange multipliers maximizing the
Dual Problem.

α∗
i > 0 holds only for support vectors.
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Linear Programming Support Vector Machines

Idea: Minimize an estimate of the number of positive multipliers∑n
i=1 αi which improves bounds on the generalization error.

The Lagrangian for the LP-SVM is

minimize W (α, ξ) =
∑n

i=1 αi + C
∑n

i=1 ξi

subject to zi

[∑n
j=1 αjyT

i yj + w0

]
≥ 1− ξi,

αi ≥ 0, ξi ≥ 0, 1 ≤ i ≤ n

Advantage: efficient LP solver can be used.

Disadvantage: theory is not as well understood as for standard
SVMs.
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Non–Linear SVMs

Feature extraction by non linear transformation y = φ(x)

Problem:
yT

i yj = φT(xi)φ(xj)
is the inner product in a high dimensional space.

A kernel function is defined by

∀x, z ∈ Ω : K(x, z) = φT(x)φ(z)

Using the kernel function the discriminant function becomes

g(x) =
n∑

i=1

αizi K(xi,x)︸ ︷︷ ︸
replaces yT

i y
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Characterization of Kernels

For any symmetric matrix K(xi,xj)|ni,j=1 (Gram matrix) there
exists an eigenvector decomposition

K = V ΛV T .

V : orthogonal matrix of eigenvectors (vti)|ni=1

Λ: diagonal matrix of eigenvalues λt

Assume all eigenvalues are nonnegative and consider mapping

φ : xi→
(√

λtvti

)n

t=1
∈ R

n, i = 1, . . . , n

Then it follows

φT(xi)φ(xj) =
n∑

t=1

λtvtivtj =
(
V ΛV T

)
ij

= Kij = K(xi,xj)
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Positivity of Kernels

Theorem: Let Ω be a finite input space with K(x, z) a symme-
tric function on Ω. Then K(x, z) is a kernel function if and only
if the matrix

K = (K(xi,xj))
n
i,j=1

is positive semi-definite (has only non-negative eigenvalues).

Extension to infinite dimensional Hilbert Spaces:

< φ(x), φ(z) >=
∞∑

i=1

λiφi(x)φi(z)
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Mercer’s Theorem

Theorem (Mercer): Let Ω be a compact subset of R
n. Suppo-

se K is a continuous symmetric function such that the integral
operator TK : L2(X)→ L2(X),

(TKf)(·) =
∫

Ω

K(·,x)f(x)dx,

is positive, that is
∫

Ω×Ω

K(x, z)f(x)f(z)dxdz > 0 ∀ f ∈ L2(Ω)

Then we can expand K(x, z) in a uniformly convergent series
in terms of TK ’s eigen-functions φj ∈ L2(Ω), with ||φj||L2 = 1
and λj > 0.
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Possible Kernels

Remark: Each kernel function, that hold Mercer’s conditions
describes an inner product in a high dimensional space. The
kernel function replaces the inner product.

Possible Kernels:

a) K(x, z) = exp
(
−||x− z||2

2σ2

)
(RBF Kernel)

b) K(x, z) = tanhκxz− b (Sigmoid Kernel)

c) K(x, z) = (xz)d (Polynomial Kernel)

K(x, z) = (xz + 1)d

d) K(x, z) : string kernels for sequences
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Kernel Engineering

Kernel composition rules: Let K1, K2 be kernels over Ω ×
Ω, Ω ⊆ R

d, a ∈ R
+, f(.) a real-vealued function φ : Ω → R

e

with K3 a kernel over R
e × R

e.

Then the following functions are kernels:

1. K(x, z) = K1(x, z) + K2(x, z),
2. K(x, z) = aK1(x, z),
3. K(x, z) = K1(x, z)K2(x, z),
4. K(x, z) = f(x)f(z),
5. K(x, z) = K3(φ(x), φ(z)),
6. K(x, z) = p(K1(x, z)), (p(x) is a polynomial with positive co-

efficients)
7. K(x, z) = exp(K1(x, z)),

Visual Computing: Joachim M. Buhmann — Machine Learning 227/267

Applet HTML Page

Visual Computing: Joachim M. Buhmann — Machine Learning 228/267

Example: Hand Written Digit Recognition

• 7291 training images und 2007 test images (16x16 pixel, 256
gray values)

Classification method test error
human classification 2.7 %
perceptron 5.9 %
support vector machines 4.0 %
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SVMs for Secondary Structure Prediction

Proteins are represented in “zeroth order” by the percentage
of amino-acids in the polypeptide chain;� “vectorial” repre-
sentation in R

20

Protein structure problem: sequence as primary structure,
local motives as secondary structure, protein folds as ter-
nary structure.

SVM classification typically use the RBF kernel

k(x,y) = exp
(−γ‖x− y‖2)

Secondary structure prediction as a multiclass problem: De-
tect classes helix (H), sheet (E) and coil (C)
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Accuracy measure: Q3 = % of correct 3-state symbols, i.e.

Q3 =
#correctly predicted residues

total # of residues
· 100

Practical Problem: How to apply SVMs for k > 2 classes?

Visual Computing: Joachim M. Buhmann — Machine Learning 231/267

Linear Discriminants and the Multicategory
Case

FIGURE 5.3. Linear decision boundaries for a four-class problem. The Top figure shows ωi/not ωi dichotomies while the bottom
figure shows ωi/ωj dichotomies and the corresponding decision boundaries Hij . The pink regions have ambiguous category
assignments. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.

Idea: it is often preferable to reformulate the multiclass problem as (k − 1)
“class α – not class α” dichotomies or k(k−1)/2 “class α or β” dichotomies.

Problem: some areas in feature space are ambiguously classified.
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Experimental Results

• PHD (by B. Rost et al., Neural Net-
work based approach) – 72-74%
Q3

• Psi-pred (by D. T. Jones et al.,
Neural Network based approach) –
76-78% Q3

• The extensive study by Ward et
al. (Bioinformatics, 2003) with dif-
ferent SVM realization reports re-
sults 73-77% Q3

• Two-layer classification strategy
with position-specific scoring sche-
me (Guo et al., Proteins, 2004)).
Accuracy ranges from 78% – 80%.

Histogram of Q3 scores for 121 test pro-

teins (Ward et al., Bioinformatics 19:13, 2003)
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Machine Learning on Audio Data

Project with the company Phonak (Stäfa), producer of hearing
aids.

Task: Given an accoustic environment, find appropriate control
settings for the hearing aid:

• Speech understanding in silent and noisy environments
• Natural hearing of music and sounds in nature
• Comfortable setting for noisy environments
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Classification of Audio Data

Current setting: Four sound classes are defined correspon-
ding to the basic hearing goals:

→ Speech
→ Speech in Noise
→ Music
→ Noise

Goal: Let the hearing instrument autonomously decide which
environment you are in!

Question: Are the four sound classes supported by sound sta-
tistics?
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Features from Audio Data

Feature set: Common features are

• distribution of the spectrum
• tonality
• rhythm
• estimated signal to noise ratio (SNR)
• ... and others

Strong computational constraints in the hearing aid!

• Very little computational power and memory is available.
• Delay must not exceed a few ten miliseconds

→ Complex features can only be approximated.
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Classification Quality for different Classifiers
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Linear Discriminant Analysis

• Speech and most music files can be clearly separated.

• Speech in noise and noise are substantially overlapping.
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Feature importance

Relative feature importance for a sparse and a dense linear
model:

• All of the currently used features are used ...

• ... but not all features have the same importance.
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Machine Learning: Topic Chart

• Core problems of pattern recognition

• Bayesian decision theory

• Perceptrons and Support vector machines

• Data clustering

• Dimension reduction
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Supervised vs. Unsupervised learning

Training data: A sample from the data source with the correct
classification/regression solution already assigned.

Supervised learning = Learning based on training data.

Two steps:

1. Training step: Learn classifier/regressor from training data.
2. Prediction step: Assign class labels/functional values to

test data.

Perceptron, LDA, SVMs, linear/ridge/kernel ridge regression
are all supervised methods.

Unsupervised learning: Learning without training data.
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Unsupervised learning

Examples:

• Data clustering. (Some authors do not distinguish between
clustering and unsupervised learning.)
• Dimension reduction techniques.

Data clustering: Divide input data into groups of similar
points.
→ Roughly the unsupervised counterpart to classification.

Note the difference:

• Supervised case: Fit model to each class of training points,
then use models to classify test points.
• Clustering: Simultaneous inference of group structure and

model.
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Grouping or Clustering: the k-Means Problem

Given are d-dimensional sample vectors x1, . . . ,xn ∈ R
d

Define ...

• ... assignment vector c ∈ {1, . . . , k}n

• ... prototypes yν ∈ Y ⊂ R
d (ν ∈ {1, . . . , k})

Problem: Find c and yν such that the clustering costs are mi-
nimized (ci := c(xi))

Rkm (c,Y) =
n∑

i=1

||xi − yci
||2

Mixed combinatorial and continuous optimization problem
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k-Means Algorithm
1. Choose k sample objects randomly as prototypes, i.e., se-

lect Y = {x1, . . . ,xk}

2. Iterate:

• Keep prototypes yci
fixed and assign sample vectors xi to

nearest prototype

ci = arg min
ν∈{1,...,k}

||xi − yci
||2

• Keep assignments ci fixed and estimate prototypes

yν =
1
nν

∑
i:ci=ν

xi with nν = |{i : ci = ν}|
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Clustering of Vector Data
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Mixture models

Def.: A finite mixture model is a probability density of the form

p (x) =
l∑

j=1

cjpj (x)

where the pj are probability densities on a common domain
Ω, cj ≥ 0 constants and

∑
j cj = 1.

Remarks:

• p is a density on Ω.
• If all components are parametric models, then so is p.
• Most common: Gaussian mixture, pj (x) := g (x|μj, σj).
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Mixture models: Interpretation

Recall: Addition on probabilities↔ logical OR.

Represented data source:

• Source = set of component sources (modeled by the pj)
• Each data value is drawn from exactly one component

source.
• cj: Probability of draw from pj.

Application to clustering: Natural model if...

1. each data point belongs to exactly one group.
2. we have some idea what the group densities look like.
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Gaussian mixture model

p (x|μμμ,σσσ) =
l∑

j=1

cjg (x|μj, σj)
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Parametric mixtures: Inference

Inference: How can we estimate the model parameters
cj, μj, σj?

We refer to the source information (i.e.,which component was
a data point drawn from) as assignments.

Problem:

• Parameters can be estimated by ML if assignments are
known.
• Assignments can be estimated from model if parameters

are known.

Idea: Iterative approach.
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Expectation-Maximization algorithm

Estimate Gaussian mixture from data values x1, . . . , xn.

Approach: Regard class assignments as random variables.

Notation: Assignment variables Mij :=

{
1 xi drawn from pj

0 otherwise

Algorithm: Iterates two steps:

• E-step: Estimate expected values for Mij from current mo-
del configuration.
• M-step: Estimate model parameters from current assi-

gnment probabilities E [Mij].

This will require some more explanation.
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Gaussian mixture: E-step

Current model parameters: θ̃̃θ̃θ = (c̃, μ̃̃μ̃μ, σ̃̃σ̃σ) (from last M-step)

Compute expectations:

E
[
Mij

∣∣∣x, θ̃̃θ̃θ
]

= Pr{xi was drawn from pj}

=
cjp(xi|θ̃j)∑l

k=1 ckp(xi|θ̃k)
=

cjg (xi|μ̃j, σ̃j)∑l
k=1 ckg (xi|μ̃k, σ̃k)

Jargon: The binary assignments (”hard assignments”) are re-
laxed to values E [Mij] ∈ [0, 1] (”soft assignments”).
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Gaussian mixture: M-step

Task: Estimate model parameters given assignments.

Easy for hard assignments:

• Select all xi with Mij = 1.
• Perform ML estimation on this data subset.

Can we do it for soft assignments? The log-likelihood is

lM (θ) =
n∑

i=1

log

⎛
⎝ l∑

j=1

Mijcjg (xi|μj, σj)

⎞
⎠

Technical problem: We want to substitute expected values
for Mij. We can apply an expectation to lM, but how do we
get it into the log?
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Gaussian mixture: M-step

Trick: (This is a true classic.)

n∑
i=1

log

⎛
⎝ l∑

j=1

Mijcjg (xi|μj, σj)

⎞
⎠ =

n∑
i=1

l∑
j=1

Mij log (cjg (xi|μj, σj))

Explanation: For all i, Mij0 = 1 for exactly one j0. So:

log

⎛
⎝ l∑

j=1

Mijfj

⎞
⎠ = log (fj0) = Mij0 log (fj0) =

∑
j

Mij log (fj)

Note: This introduces an error, because it is only valid for hard
assignments. We relax assignments, and relaxation differs
inside and outside logarithm.
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Gaussian mixture: M-step

Expected log-likelihood:

EM|x,θ̃ [l (θ)] = E

⎡
⎣ n∑

i=1

l∑
j=1

Mij log (cjg (xi|μj, σj))

⎤
⎦

=
n∑

i=1

l∑
j=1

E [Mij] log (cjg (xi|μj, σj))

=
∑
i,j

E [Mij] log (cj)︸ ︷︷ ︸
1

+
∑
i,j

E [Mij] log (g (xi|μj, σj))︸ ︷︷ ︸
2

• Substitute E-step results for E [Mij].
• Maximize (1) and (2) separately w. r. t. cj and μj, σj.
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Gaussian mixture: M-step

Maximizing (1):

cj :=
1
n

∑
i

E [Mij]

Maximizing (2): For 1D Gaussian model, analytic maximization
gives

μ̃j =
∑n

i=1 xiE [Mij]∑n
i=1 E [Mij]

σ̃2
j =

∑n
i=1 (xi − μ̃j)

2 E [Mij]∑n
i=1 E [Mij]

→ weighted form of the standard ML estimators.
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EM algorithm: Summary

Notation: Q(θθθ, θ̃̃θ̃θ) := EM|x,θ̃ [lM (θ)]

EM algorithm:

• E-step:
1. Substitute current parameter estimates θ̃̃θ̃θ into model.
2. Estimate expectations E [Mij].
3. Substitute estimates into log-likelihood. This gives Q as

function of θθθ.
• M-step:

Parameter estimation: Maximize Q(θθθ, θ̃̃θ̃θ) w. r. t. θθθ.

Observation: This does not seem to be limited to a specific
model (like Gaussian mixtures). Can it be generalized?
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EM: General case

When can EM be applied?
If we can define hidden variables M such that

• The joint density p (x,M|θθθ) is known.
• Expected values of the hidden variables can be estimated

from a given model configuration.
• Given estimates for the hidden variables, ML estimation is

possible.

When do we want to apply EM for ML estimation? If . . .

• . . . ML is hard for p (x|θθθ)
• . . . ML is easy for p (x,M|θθθ) when we know M.
• . . . we can efficiently compute expectations for M.
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The two log-likelihoods

The density of the augmented data (x,M) is:

p (x,M|θθθ) = p (M|x, θθθ) p (x|θθθ)

This means we deal with two different log-likelihoods:

• The one we are actually interested in:

l (θθθ) = log (p (x|θθθ))
• The one including the hidden variables:

lM (θθθ) = log (p (x,M|θθθ))
l (θθθ) is constant w. r. t. the expectation EM|x,θ̃θθ [ . ] in the
algorithm. lM (θθθ) is dependent on hidden variables M.
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Proof of Convergence

What we want to show: l (θθθ) > l(θ̃θθ).

Rewrite l (θθθ) using definition of conditional prob.:

l (θθθ) = log (p (x|θθθ)) = log
(

p (x,M|θθθ)
p (M|x, θθθ)

)
= lM (θθθ)− log (p (M|x, θθθ))

Apply the expectation:

EM|x,θ̃θθ [l (θθθ)] = EM|x,θ̃θθ [lM (θθθ)]− EM|x,θ̃θθ [log (p (M|x, θθθ))]

⇔ l (θθθ) = Q(θθθ, θ̃̃θ̃θ)− EM|x,θ̃θθ [log (p (M|x, θθθ))]
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Proof of convergence

We want to show that this is larger than

l(θ̃θθ) = Q(θ̃θθ, θ̃̃θ̃θ)− EM|x,θ̃θθ

[
log

(
p
(
M|x, θ̃θθ

))]

First term Q: Two possibilities,

1. Q is already maximal (algorithm converged).
2. Otherwise: Q(θθθ, θ̃̃θ̃θ) > Q(θ̃θθ, θ̃̃θ̃θ).

For the second term holds:

EM|x,θ̃θθ

[
log

(
p
(
M|x, θ̃θθ

))]
≥ EM|x,θ̃θθ [log (p (M|x, θθθ))] (∗)
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Proof of convergence

Summary:

l (θθθ) = Q(θθθ, θ̃̃θ̃θ)− EM|x,θ̃θθ [log (p (M|x, θθθ))]

> Q(θ̃θθ, θ̃̃θ̃θ)− EM|x,θ̃θθ

[
log

(
p
(
M|x, θ̃θθ

))]
= l(θ̃θθ)

We’re done, except for (∗).

Proof of (∗): Use Jensen’s inequality: If f is a convex function
then E [f (X)] ≥ f (E [X]) for any RV X. The log function is
concave, so E [log (X)] ≤ log (E [X]).
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Abbreviate p := p (M|x, θθθ) and p̃ := p
(
M|x, θ̃θθ

)
.

EM|x,θ̃θθ [log (p)] = EM|x,θ̃θθ

[
log

(
p

p̃
· p̃
)]

= EM|x,θ̃θθ

[
log

(
p

p̃

)]
+ EM|x,θ̃θθ [log (p̃)]

≤ log
(

EM|x,θ̃θθ

[
p

p̃

])
+ EM|x,θ̃θθ [log (p̃)]

= log
(∑

p̃ · p
p̃

)
+ EM|x,θ̃θθ [log (p̃)]

= log(
∑

p︸ ︷︷ ︸
=1

) + EM|x,θ̃θθ [log (p̃)]

= EM|x,θ̃θθ [log (p̃)] �

Visual Computing: Joachim M. Buhmann — Machine Learning 263/267

Convergence results

Theoretical convergence guarantees:

• What we have shown above: The log-likelihood increases
with each iteration. This does not imply convergence to lo-
cal maximum.
• For sufficiently regular log-likelihoods, the algorithm always

converges to a local maximum of the log-likelihood.

What can go wrong: Like any gradient-type algorithm, it can
get stuck in a saddle point or even a local minimum. Note:

• This is a scale problem. It happens when the gradient step
is too large to resolve a local maximum and oversteps.
• Can be prevented by requiring regularity conditions.
• Only happens for numerical M-step.
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Convergence in practice

Hard to analyze:

• Cost function (log-likelihood) changes between steps.
• Influence of hidden variables is not entirely understood.

Local minima/saddle points: Convergence to these points is
a theoretical possibility, but usually not a practical problem.

Worst problem: Initialization. EM results tend to be highly
dependent on initial values.

Common strategy: Initialize with random values. Rerun algo-
rithm several times and choose solution which has the largest
likelihood.
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k-Means algorithm

Simplify Gaussian mixture model EM:

1. Assume that all Gaussians have the same variance.
2. Use hard assignments instead of expectations.

Resulting algorithm: Alternate steps

1. For each class, choose all assigned data values and ave-
rage them. (→ ML estimation of Gaussian mean for hard
assignments.)

2. Assign each value to class under which its probability of
occurrence is largest.

Hence the name: For k classes, algorithm iteratively adjust
means (= class averages).
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Some history

EM: Introduced by Dempster, Laird and Rubin in 1977. Pre-
viously known as Baum-Welch algorithm for Hidden Markov
Models.

k-Means: Also known as Lloyd-Max-Algorithm in vector quan-
tization. In 1973, Bezdek introduced a ’fuzzy’ version of k-
Means which comes very close to EM for mixture models.

EM convergence: Dempster, Laird and Rubin proved a theo-
rem stating that EM always converges to a local maximum,
but their proof was wrong. In 1983, Wu gave a number of re-
gularity conditions sufficient to ensure convergence to a local
maximum.
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