Support Vector Machine (SVM)

Extending the perceptron idea: use a linear classifier with margin and a non-linear feature transformation.

Nonlinear Transformation in Kernel Space

Lagrangian Optimization Theory

Optimization under constraints (Primal Problem):

Given an optimization problem with domain $\Omega \subseteq \mathbb{R}^d$,

minimize
$$f(\mathbf{w})$$
, $\mathbf{w} \in \Omega$
subject to $g_i(\mathbf{w}) \le 0$, $i = 1, \dots, k$
 $h_i(\mathbf{w}) = 0$, $i = 1, \dots, m$

The generalized Lagrangian function is defined as

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) + \sum_{i=1}^{m} \beta_i h_i(\mathbf{w})$$

Lagrangian Dual Problem (1797)

Definition (Langrangian Dual Problem):

The respective Lagrangian dual problem is given by

maximize $\theta(\boldsymbol{\alpha},\boldsymbol{\beta}),$ subject to $\alpha_i \geq 0, \quad i = 1, \dots, k$

where
$$\theta(\alpha, \beta) = \inf_{\mathbf{w} \in \Omega} L(\mathbf{w}, \alpha, \beta)$$

The value of the objective function at the optimal solution is called the **value of the problem**.

The **difference** between the values of the primal and the dual problems is known as the *duality gap*.

Upper Bound on Dual Costs

Theorem: Let $\mathbf{w} \in \Omega$ be a feasible solution of the primal problem of the previous definition and $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ a feasible solution of the respective dual problem. Then $f(\mathbf{w}) \geq \theta(\boldsymbol{\alpha}, \boldsymbol{\beta})$.

Proof:

$$\begin{aligned} \theta(\boldsymbol{\alpha},\boldsymbol{\beta}) &= \inf_{\mathbf{u}\in\Omega} L(\mathbf{u},\boldsymbol{\alpha},\boldsymbol{\beta}) \\ &\leq L(\mathbf{w},\boldsymbol{\alpha},\boldsymbol{\beta}) \\ &= f(\mathbf{w}) + \sum_{i=1}^{k} \underbrace{\alpha_{i}}_{\geq 0} \underbrace{g_{i}(\mathbf{w})}_{\leq 0} + \sum_{j=1}^{m} \beta_{j} \underbrace{h_{j}(\mathbf{w})}_{=0} \quad \leq f(\mathbf{w}) \end{aligned}$$

The feasibility of \mathbf{w} implies $g_i(\mathbf{w}) \leq 0$ and $h_i(\mathbf{w}) = 0$, while the feasibility of $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ implies $\alpha_i \geq 0$.

Duality Gap

Corollary: The value of the dual problem is upper bounded by the value of the primal problem,

 $\sup \left\{ \theta(\boldsymbol{\alpha}, \boldsymbol{\beta}) : \boldsymbol{\alpha} \ge 0 \right\} \le \inf \left\{ f(\mathbf{w}) : \mathbf{g}(\mathbf{w}) \le 0, \mathbf{h}(\mathbf{w}) = 0 \right\}$

Theorem: The triple $(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ is a saddle point of the Lagrangian function for the primal problem, if and only if its components are optimal solutions of the primal and dual problems and if there is **no duality gap**, i.e., the primal and dual problems having the value

$$f(\mathbf{w}^*) = \theta(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$$

Strong Duality

Theorem: Given an optimization problem with convex objective function f and convex domain $\Omega \subseteq \mathbb{R}^d$,

$$\begin{array}{ll} \text{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega \\ \text{subject to} & g_i(\mathbf{w}) \leq 0, & i = 1, \dots, k \\ & h_i(\mathbf{w}) = 0, & i = 1, \dots, m \end{array}$$

where the g_i and h_i are affine functions, that is

$$\mathbf{h}(\mathbf{w}) = \mathbf{A}\mathbf{w} - \mathbf{b},$$

for some matrix A and vector b, then the duality gap is zero.

(This case applies to SVMs!)

Remark: If the functions $g_i(\mathbf{w})$ are convex then strong duality holds provided some *constraint qualifications* are fulfilled (e.g. Slater condition).

Kuhn-Tucker Conditions (1951)

Theorem: Given an optimization problem with convex domain $\Omega \subseteq \mathbb{R}^d$,

minimize
$$f(\mathbf{w})$$
, $\mathbf{w} \in \Omega$
subject to $g_i(\mathbf{w}) \le 0$, $i = 1, ..., k$
 $h_i(\mathbf{w}) = 0$, $i = 1, ..., m$

with $f \in C^1$ convex and g_i , h_i affine, necessary and sufficient conditions for a normal point \mathbf{w}^* to be an optimum are the existence of α^* , β^* such that

$$\frac{\partial L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \mathbf{w}} = 0 \qquad \frac{\partial L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}} = 0$$

 $\alpha_i^* g_i(\mathbf{w}^*) = 0, \quad g_i(\mathbf{w}^*) \le 0, \quad \alpha_i^* \ge 0, \quad i = 1, \dots, k$

Support Vector Machines (SVM)

Idea: linear classifier with margin and feature transformation.

Transformation from original feature space to nonlinear feature space.

$$\begin{aligned} \mathbf{y}_i = \phi(\mathbf{x}_i) & \text{e.g. Polynomial, Radial Basis Function, ..} \\ \phi : \mathbb{R}^d \to \mathbb{R}^e \text{ with } d \ll e \\ z_i = \begin{cases} +1 \\ -1 \end{cases} \text{ if } \mathbf{x}_i \text{ in class } \begin{cases} y_1 \\ y_2 \end{cases} \end{aligned}$$

Training vectors should be linearly separable after mapping!

Linear discriminant function:

$$g(\mathbf{y}) = \mathbf{w}^{\mathsf{T}}\mathbf{y} + w_0$$

Support Vector Machine (SVM)

Find hyperplane that maximizes the **margin** m with

 $z_i g(\mathbf{y}_i) = z_i(\mathbf{w}^\mathsf{T} \mathbf{y} + w_0) \ge m \quad \text{for all } \mathbf{y}_i \in \mathcal{Y}$

Vectors y_i with $z_i g(y_i) = m$ are the support vectors.

Maximal Margin Classifier

Invariance: assume that the weight vector \mathbf{w} is normalized $(\|\mathbf{w}\| = 1)$ since a rescaling $(\mathbf{w}, w_0) \leftarrow (\lambda \mathbf{w}, \lambda w_0), m \leftarrow \lambda m$ does not change the problem.

Condition:
$$z_i = \begin{cases} +1 & \mathbf{w}^\mathsf{T} \mathbf{y}_i + w_0 \ge m \\ -1 & \mathbf{w}^\mathsf{T} \mathbf{y}_i + w_0 \le -m \end{cases} \quad \forall i$$

Objective: maximize margin m s.t. joint condition $z_i (\mathbf{w}^\mathsf{T} \mathbf{y}_i + w_0) \ge m$ is met.

Learning problem: Find w with ||w|| = 1, such that the margin m is maximized.

maximize
$$m$$

subject to $\forall \mathbf{y}_i \in \mathcal{Y} : z_i(\mathbf{w}^\mathsf{T}\mathbf{y}_i + w_0) \ge m$

SVM Learning

What is the margin m?

Consider two points $y^+, y^$ of class 1,2 which are located on both sides of the margin boundaries.

Transformation of objective:

rescaling $\mathbf{w} \leftarrow \frac{\mathbf{w}}{m}, w_0 \leftarrow \frac{w_0}{m} \Rightarrow$ yields the constraints

 $z_i(\mathbf{w}^\mathsf{T}\mathbf{y}_i + w_0) \ge 1$

Margin:

$$m = \frac{1}{2\|\mathbf{w}\|} (\mathbf{w}^{\mathsf{T}} \mathbf{y}^{+} - \mathbf{w}^{\mathsf{T}} \mathbf{y}^{-}) = \frac{1}{\|\mathbf{w}\|}$$

 $m = \frac{1}{\|\mathbf{w}\|}$ follows from inserting $\pm (\mathbf{w}^{\mathsf{T}}\mathbf{y}^{\pm} + w_0) = 1$

 $\Rightarrow\,$ maximizing the margin corresponds to minimizing the norm $||{\bf w}||$ for margin m=1.

SVM Lagrangian

Minimize $||\mathbf{w}||$ for a given margin m = 1

minimize
$$\mathcal{T}(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

subject to $z_i(\mathbf{w}^{\mathsf{T}}\mathbf{y}_i + w_0) \ge 1$

Generalized Lagrange Function:

$$L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} - \sum_{i=1}^n \alpha_i \left[z_i (\mathbf{w}^\mathsf{T} \mathbf{y}_i + w_0) - 1 \right]$$

Functional and geometric margin: The problem formulation with margin m = 1 is called the *functional margin* setting; The original formulation refers to the *geometric margin*.

Stationarity of Lagrangian

Extremality condition:

$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\alpha})}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i \leq n} \alpha_i z_i \mathbf{y}_i = 0 \implies \mathbf{w} = \sum_{i \leq n} \alpha_i z_i \mathbf{y}_i$$
$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\alpha})}{\partial w_0} = -\sum_{i \leq n} \alpha_i z_i = 0$$

Resubstituting $\frac{\partial L}{\partial \mathbf{w}} = 0, \frac{\partial L}{\partial w_0} = 0$ into the Lagrangian function $L(\mathbf{w}, w_0, \boldsymbol{\alpha})$

$$L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i \leq n} \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 \right]$$

$$= \frac{1}{2} \sum_{i \leq n} \sum_{j \leq n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j - \sum_{i \leq n} \sum_{j \leq n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + \sum_{i \leq n} \alpha_i$$

$$= \sum_{i \leq n} \alpha_i - \frac{1}{2} \sum_{i \leq n} \sum_{j \leq n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j \quad \text{(note the scalar product!)}$$

Dual Problem

The Dual Problem for support vector learning is

maximize
$$W(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_i z_j \alpha_i \alpha_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j$$

subject to $\forall i \ \alpha_i \ge 0 \quad \land \quad \sum_{i=1}^{n} z_i \alpha_i = 0$

The optimal hyperplane \mathbf{w}^*, w_0^* is given by

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y}_i, \quad w_0^* = -\frac{1}{2} \left(\min_{i:z_i=1} \mathbf{w}^* \mathbf{y}_i + \max_{i:z_i=-1} \mathbf{w}^* \mathbf{y}_i \right)$$

where α^* are the optimal Lagrange multipliers maximizing the Dual Problem.

Support Vectors

The Kuhn-Tucker Conditions for the maximal margin SVM are

$$\alpha_{i}^{*}(z_{i}g^{*}(\mathbf{y}_{i})-1) = 0, \qquad i = 1, \dots, n$$
$$\alpha_{i}^{*} \geq 0, \qquad i = 1, \dots, n$$
$$z_{i}g^{*}(\mathbf{y}_{i})-1 \geq 0, \qquad i = 1, \dots, n$$

The first one is known as the **Kuhn-Tucker complementary condition**. The conditions imply

 $z_i g^*(\mathbf{y}_i) = 1 \implies \alpha_i^* \ge 0$ Support Vectors (SV)

$$z_i g^*(\mathbf{y}_i) \neq 1 \implies \alpha_i^* = 0$$

Non Support Vectors

Optimal Decision Function

Sparsity:

$$g^{*}(\mathbf{y}) = \mathbf{w}^{*\mathsf{T}}\mathbf{y} + w_{0}^{*} = \sum_{i=1}^{n} z_{i}\alpha_{i}^{*}\mathbf{y}_{i}^{\mathsf{T}}\mathbf{y} + w_{0}^{*}$$
$$= \sum_{i \in \mathsf{SV}} z_{i}\alpha_{i}^{*}\mathbf{y}_{i}^{\mathsf{T}}\mathbf{y} + w_{0}^{*}$$

Remark: only few support vectors enter the sum to evaluate the decision function! \Rightarrow efficiency and interpretability

Optimal margin:

$$\mathbf{w}^{\mathsf{T}}\mathbf{w} = \sum_{i \in \mathsf{SV}} \alpha_i^*$$

Soft Margin SVM

For each trainings vector $y_i \in \mathcal{Y}$ a **slack variable** ξ_i is introduced to measure the violation of the margin constraint.

Find hyperplane that maximizes the margin $z_i g^*(\mathbf{y}_i) \ge m(1-\xi_i)$

Vectors \mathbf{y}_i with $z_i g^*(\mathbf{y}_i) = m(1-\xi_i)$ are called **support vectors**.

Learning the Soft Margin SVM

Slack variables are penalized by L_1 norm.

minimize
$$\mathcal{T}(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_i$$

subject to $z_i(\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) \geq 1 - \xi_i$
 $\xi_i \geq 0$

C controls the amount of constraint violations vs. margin maximization!

Lagrange function for soft margin SVM

$$L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^n \xi_i$$
$$- \sum_{i=1}^n \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \beta_i \xi_i$$

Visual Computing: Joachim M. Buhmann — Machine Learning

Stationarity of Primal Problem

Differentiation:

$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^n \alpha_i z_i \mathbf{y}_i = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^n \alpha_i z_i \mathbf{y}_i$$
$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \xi_i} = C - \alpha_i - \beta_i = 0 \quad \frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial w_0} = -\sum_{i=1}^n \alpha_i z_i = 0$$

Resubstituting into the Lagrangian function $L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ yields

$$L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_i$$
$$- \sum_{i=1}^{n} \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 + \xi_i \right] - \sum_{i=1}^{n} \beta_i \xi_i$$

$$L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j + C \sum_{i=1}^n \xi_i$$
$$- \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j$$
$$+ \sum_{i=1}^n \alpha_i (1 - \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$
$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j$$
$$+ \sum_{i=1}^n (\underbrace{C - \alpha_i - \beta_i}_{\partial \xi_i}) \xi_i$$
$$= \frac{\partial L}{\partial \xi_i} = 0$$

$$= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j$$

Constaints of the Dual Problem

The dual objective function is the same as for the maximal margin SVM. The only difference is the constraint

$$C - \alpha_i - \beta_i = 0$$

Together with $\beta_i \ge 0$ it implies

$$\alpha_i \le C$$

The Kuhn-Tucker complementary conditions

$$\alpha_i (z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 + \xi_i) = 0, \qquad i = 1, \dots, n$$

$$\xi_i (\alpha_i - C) = 0, \qquad i = 1, \dots, n$$

imply that nonzero slack variables can only occur when $\alpha_i = C$.

Dual Problem of Soft Margin SVM

The Dual Problem for support vector learning is

maximize
$$W(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_i z_j \alpha_i \alpha_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j$$

subject to $\sum_{j=1}^{n} z_j \alpha_j = 0 \land \forall i \ \mathbf{C} \ge \alpha_i \ge 0$

The optimal hyperplane \mathbf{w}^* is given by

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y}_i$$

where α^* are the optimal Lagrange multipliers maximizing the Dual Problem.

$$\alpha_i^* > 0$$
 holds only for **support vectors**.

Applet HTML Page

Linear Programming Support Vector Machines

Idea: Minimize an estimate of the number of positive multipliers $\sum_{i=1}^{n} \alpha_i$ which improves bounds on the generalization error.

The Lagrangian for the LP-SVM is

minimize
$$W(\boldsymbol{\alpha}, \xi) = \sum_{i=1}^{n} \alpha_i + C \sum_{i=1}^{n} \xi_i$$

subject to $z_i \left[\sum_{j=1}^{n} \alpha_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j + w_0 \right] \ge 1 - \xi_i,$
 $\alpha_i \ge 0, \ \xi_i \ge 0, \ 1 \le i \le n$

Advantage: efficient LP solver can be used.

Disadvantage: theory is not as well understood as for standard SVMs.

Non–Linear SVMs

Feature extraction by non linear transformation $\mathbf{y} = \phi(\mathbf{x})$ Problem:

$$\mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j = \phi^{\mathsf{T}}(\mathbf{x}_i) \phi(\mathbf{x}_j)$$

is the inner product in a high dimensional space.

A kernel function is defined by

$$\forall \mathbf{x}, \mathbf{z} \in \Omega : \quad K(\mathbf{x}, \mathbf{z}) = \phi^{\mathsf{T}}(\mathbf{x})\phi(\mathbf{z})$$

Using the kernel function the discriminant function becomes

$$g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i z_i \underbrace{K(\mathbf{x}_i, \mathbf{x})}_{\text{replaces } \mathbf{y}_i^{\mathsf{T}} \mathbf{y}}$$

Characterization of Kernels

For any symmetric matrix $K(\mathbf{x}_i, \mathbf{x}_j)|_{i,j=1}^n$ (Gram matrix) there exists an eigenvector decomposition

$$K = V \Lambda V^{\mathsf{T}}$$
.

V: orthogonal matrix of eigenvectors $(v_{ti})|_{i=1}^{n}$ Λ : diagonal matrix of eigenvalues λ_t

Assume all eigenvalues are nonnegative and consider mapping

$$\phi: \mathbf{x}_i \to \left(\sqrt{\lambda_t} v_{ti}\right)_{t=1}^n \in \mathbb{R}^n, i = 1, \dots, n$$

Then it follows

$$\phi^{\mathsf{T}}(\mathbf{x}_i)\phi(\mathbf{x}_j) = \sum_{t=1}^n \lambda_t v_{ti} v_{tj} = \left(V\Lambda V^{\mathsf{T}}\right)_{ij} = K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$$

Visual Computing: Joachim M. Buhmann — Machine Learning

Positivity of Kernels

Theorem: Let Ω be a finite input space with $K(\mathbf{x}, \mathbf{z})$ a symmetric function on Ω . Then $K(\mathbf{x}, \mathbf{z})$ is a kernel function if and only if the matrix

$$K = \left(K(\mathbf{x}_i, \mathbf{x}_j)\right)_{i,j=1}^n$$

is positive semi-definite (has only non-negative eigenvalues).

Extension to infinite dimensional Hilbert Spaces:

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \sum_{i=1}^{\infty} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{z})$$

Mercer's Theorem

Theorem (Mercer): Let Ω be a compact subset of \mathbb{R}^n . Suppose K is a continuous symmetric function such that the integral operator $T_K : L_2(X) \to L_2(X)$,

$$(T_K f)(\cdot) = \int_{\Omega} K(\cdot, \mathbf{x}) f(\mathbf{x}) d\mathbf{x},$$

is positive, that is $\int_{\Omega \times \Omega} K(\mathbf{x}, \mathbf{z}) f(\mathbf{x}) f(\mathbf{z}) d\mathbf{x} d\mathbf{z} > 0 \quad \forall f \in L_2(\Omega)$ Then we can expand $K(\mathbf{x}, \mathbf{z})$ in a uniformly convergent series in terms of T_K 's eigen-functions $\phi_j \in L_2(\Omega)$, with $||\phi_j||_{L_2} = 1$ and $\lambda_j > 0$.

Possible Kernels

Remark: Each kernel function, that hold Mercer's conditions describes an inner product in a high dimensional space. The kernel function replaces the inner product.

Possible Kernels:

a)
$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{||\mathbf{x} - \mathbf{z}||^2}{2\sigma^2}\right)$$
 (RBF Kernel)
b) $K(\mathbf{x}, \mathbf{z}) = \tanh \kappa \mathbf{x} \mathbf{z} - b$ (Sigmoid Kernel)

c)
$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}\mathbf{z})^d$$
 (Polynomial Kernel)
 $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}\mathbf{z} + 1)^d$
d) $K(\mathbf{x}, \mathbf{z})$: string kernels for sequences

Kernel Engineering

Kernel composition rules: Let K_1 , K_2 be kernels over $\Omega \times \Omega$, $\Omega \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^+$, f(.) a real-vealued function $\phi : \Omega \to \mathbb{R}^e$ with K_3 a kernel over $\mathbb{R}^e \times \mathbb{R}^e$.

Then the following functions are kernels:

1.
$$K(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z}) + K_2(\mathbf{x}, \mathbf{z}),$$

2. $K(\mathbf{x}, \mathbf{z}) = aK_1(\mathbf{x}, \mathbf{z}),$
3. $K(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z})K_2(\mathbf{x}, \mathbf{z}),$
4. $K(\mathbf{x}, \mathbf{z}) = f(\mathbf{x})f(\mathbf{z}),$
5. $K(\mathbf{x}, \mathbf{z}) = K_3(\phi(\mathbf{x}), \phi(\mathbf{z})),$
6. $K(\mathbf{x}, \mathbf{z}) = p(K_1(\mathbf{x}, \mathbf{z})), (p(x) \text{ is a polynomial with positive co-})$

efficients) 7. $K(\mathbf{x}, \mathbf{z}) = \exp(K_1(\mathbf{x}, \mathbf{z})),$

Applet HTML Page

Example: Hand Written Digit Recognition

7291 training images und 2007 test images (16x16 pixel, 256 gray values)

0	I	2	3	4	5	6	7	ł	9
٥	ł	a	3	4	5	6	7	ዩ	9
O	١	2	3	4	5	6	2	8	9

Classification method	test error		
human classification	2.7 %		
perceptron	5.9 %		
support vector machines	4.0 %		

SVMs for Secondary Structure Prediction

- **Proteins are represented** in "zeroth order" by the percentage of amino-acids in the polypeptide chain; \rightsquigarrow "vectorial" representation in \mathbb{R}^{20}
- Protein structure problem: sequence as primary structure, local motives as secondary structure, protein folds as ternary structure.

SVM classification typically use the *RBF* kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\gamma \|\mathbf{x} - \mathbf{y}\|^2\right)$$

Secondary structure prediction as a multiclass problem: Detect classes *helix (H)*, *sheet (E)* and *coil (C)*

Accuracy measure: $Q_3 = \%$ of correct 3-state symbols, i.e.

$$Q_3 = \frac{\#\text{correctly predicted residues}}{\text{total # of residues}} \cdot 100$$

Practical Problem: How to apply SVMs for k > 2 classes?

FIGURE 5.3. Linear decision boundaries for a four-class problem. The Top figure shows $\omega_i/\text{not }\omega_i$ dichotomies while the bottom figure shows ω_i/ω_j dichotomies and the corresponding decision boundaries H_{ij} . The pink regions have ambiguous category assignments. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*.

Idea: it is often preferable to reformulate the multiclass problem as (k-1)"class α – not class α " dichotomies or k(k-1)/2 "class α or β " dichotomies.

Problem: some areas in feature space are ambiguously classified.

Applet HTML Page

Generated by NetBeans IDE

Experimental Results

- PHD (by B. Rost *et al.*, Neural Network based approach) 72-74%
 Q₃
- *Psi-pred* (by D. T. Jones *et al.*, Neural Network based approach) – 76-78% Q₃
- The extensive study by *Ward* et al. (Bioinformatics, 2003) with different SVM realization reports results 73-77% Q_3
- Two-layer classification strategy with position-specific scoring scheme (*Guo* et al., Proteins, 2004)). Accuracy ranges from 78% – 80%.

Histogram of Q_3 scores for 121 test pro-

Machine Learning on Audio Data

Project with the company Phonak (Stäfa), producer of hearing aids.

- **Task:** Given an accoustic environment, find appropriate control settings for the hearing aid:
 - Speech understanding in silent and noisy environments
 - Natural hearing of music and sounds in nature
 - Comfortable setting for noisy environments

Classification of Audio Data

Current setting: Four sound classes are defined corresponding to the basic hearing goals:

- \rightarrow Speech
- \rightarrow Speech in Noise
- \rightarrow *Music*
- \rightarrow Noise

- **Goal:** Let the hearing instrument autonomously decide which environment you are in!
- **Question:** Are the four sound classes supported by sound statistics?

Features from Audio Data

Feature set: Common features are

- distribution of the spectrum
- tonality
- rhythm
- estimated signal to noise ratio (SNR)
- ... and others

Strong computational constraints in the hearing aid!

- Very little computational power and memory is available.
- Delay must not exceed a few ten miliseconds
- \rightarrow Complex features can only be approximated.

Classification Quality for different Classifiers

Linear Discriminant Analysis

- Speech and most music files can be clearly separated.
- Speech in noise and noise are substantially overlapping.

Feature importance

Relative feature importance for a sparse and a dense linear model:

- All of the currently used features are used ...
- ... but not all features have the same importance.

Machine Learning: Topic Chart

- Core problems of pattern recognition
- Bayesian decision theory
- Perceptrons and Support vector machines
- Data clustering
- Dimension reduction

Supervised vs. Unsupervised learning

Training data: A sample from the data source with the correct classification/regression solution already assigned.

Supervised learning = Learning based on training data.

Two steps:

- 1. Training step: Learn classifier/regressor from training data.
- 2. Prediction step: Assign class labels/functional values to test data.

Perceptron, LDA, *SVMs*, linear/ridge/kernel ridge regression are all supervised methods.

Unsupervised learning: Learning without training data.

Unsupervised learning

Examples:

- Data clustering. (Some authors do not distinguish between clustering and unsupervised learning.)
- Dimension reduction techniques.
- **Data clustering:** Divide input data into groups of similar points.
 - \rightarrow Roughly the unsupervised counterpart to classification.

Note the difference:

- Supervised case: Fit model to each class of training points, then use models to classify test points.
- Clustering: Simultaneous inference of group structure and model.

Grouping or Clustering: the *k***-Means Problem**

Given are *d*-dimensional sample vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$ **Define** ...

- ... assignment vector $c \in \{1, \ldots, k\}^n$
- ... prototypes $\mathbf{y}_{
 u} \in \mathcal{Y} \subset \mathbb{R}^d$ ($u \in \{1, \dots, k\}$)

Problem: Find *c* and \mathbf{y}_{ν} such that the clustering costs are minimized ($c_i := c(\mathbf{x}_i)$)

$$R^{\mathsf{km}}(c, \mathcal{Y}) = \sum_{i=1}^{n} ||\mathbf{x}_i - \mathbf{y}_{c_i}||^2$$

Mixed combinatorial and continuous optimization problem

k-Means Algorithm

1. Choose *k* sample objects randomly as prototypes, i.e., select $\mathcal{Y} = {\mathbf{x}_1, \dots, \mathbf{x}_k}$

2. Iterate:

• Keep prototypes y_{c_i} fixed and assign sample vectors x_i to nearest prototype

$$c_i = \arg\min_{\nu \in \{1,...,k\}} ||\mathbf{x}_i - \mathbf{y}_{c_i}||^2$$

• Keep assignments c_i fixed and estimate prototypes

$$\mathbf{y}_{\nu} = \frac{1}{n_{\nu}} \sum_{i:c_i = \nu} \mathbf{x}_i \text{ with } n_{\nu} = |\{i:c_i = \nu\}|$$

Clustering of Vector Data

Applet HTML Page

Generated by NetBeans IDE

Mixture models

Def.: A *finite mixture model* is a probability density of the form

$$p(x) = \sum_{j=1}^{l} c_j p_j(x)$$

where the p_j are probability densities on a common domain Ω , $c_j \ge 0$ constants and $\sum_j c_j = 1$.

Remarks:

- p is a density on Ω .
- If all components are parametric models, then so is *p*.
- Most common: Gaussian mixture, $p_j(x) := g(x|\mu_j, \sigma_j)$.

Mixture models: Interpretation

Recall: Addition on probabilities \leftrightarrow logical OR.

Represented data source:

- Source = set of component sources (modeled by the p_j)
- Each data value is drawn from exactly one component source.
- c_j : Probability of draw from p_j .

Application to clustering: Natural model if...

- 1. each data point belongs to exactly one group.
- 2. we have some idea what the group densities look like.

Gaussian mixture model

Parametric mixtures: Inference

Inference: How can we estimate the model parameters c_j, μ_j, σ_j ?

We refer to the source information (i.e., which component was a data point drawn from) as *assignments*.

Problem:

- Parameters can be estimated by ML *if assignments are known*.
- Assignments can be estimated from model if parameters are known.

Idea: Iterative approach.

Expectation-Maximization algorithm

Estimate Gaussian mixture from data values x_1, \ldots, x_n .

Approach: Regard class assignments as random variables.

Notation: Assignment variables $M_{ij} := \begin{cases} 1 & x_i \text{ drawn from } p_j \\ 0 & \text{otherwise} \end{cases}$

Algorithm: Iterates two steps:

- **E-step:** Estimate expected values for M_{ij} from current model configuration.
- **M-step:** Estimate model parameters from current assignment probabilities $E[M_{ij}]$.

This will require some more explanation.

Current model parameters: $\tilde{\theta} = (\tilde{c}, \tilde{\mu}, \tilde{\sigma})$ (from last M-step)

Compute expectations:

$$\mathsf{E}\left[M_{ij} \left| \mathbf{x}, \tilde{\boldsymbol{\theta}} \right] = \mathsf{Pr}\left\{x_i \text{ was drawn from } p_j\right\}$$

$$= \frac{c_j p(x_i | \tilde{\theta}_j)}{\sum_{k=1}^l c_k p(x_i | \tilde{\theta}_k)} = \frac{c_j g\left(x_i | \tilde{\mu}_j, \tilde{\sigma}_j\right)}{\sum_{k=1}^l c_k g\left(x_i | \tilde{\mu}_k, \tilde{\sigma}_k\right)}$$

Jargon: The binary assignments ("hard assignments") are *relaxed* to values $E[M_{ij}] \in [0, 1]$ ("soft assignments").

Task: Estimate model parameters given assignments.

Easy for hard assignments:

- Select all x_i with $M_{ij} = 1$.
- Perform ML estimation on this data subset.

Can we do it for soft assignments? The log-likelihood is

$$l_{\mathbf{M}}(\theta) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{l} M_{ij} c_j g\left(x_i | \mu_j, \sigma_j \right) \right)$$

Technical problem: We want to substitute expected values for M_{ij} . We can apply an expectation to l_M , but how do we get it into the log?

Trick: (This is a true classic.)

$$\sum_{i=1}^{n} \log \left(\sum_{j=1}^{l} M_{ij} c_j g\left(x_i | \mu_j, \sigma_j \right) \right) = \sum_{i=1}^{n} \sum_{j=1}^{l} M_{ij} \log \left(c_j g\left(x_i | \mu_j, \sigma_j \right) \right)$$

Explanation: For all *i*, $M_{ij_0} = 1$ for exactly one j_0 . So:

$$\log\left(\sum_{j=1}^{l} M_{ij} f_{j}\right) = \log\left(f_{j_{0}}\right) = M_{ij_{0}} \log\left(f_{j_{0}}\right) = \sum_{j} M_{ij} \log\left(f_{j}\right)$$

Note: This introduces an error, because it is only valid for hard assignments. We relax assignments, and relaxation differs inside and outside logarithm.

Expected log-likelihood:

$$\begin{aligned} \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\theta}}\left[l\left(\theta\right)\right] &= \mathsf{E}\left[\sum_{i=1}^{n}\sum_{j=1}^{l}M_{ij}\log\left(c_{j}g\left(x_{i}|\mu_{j},\sigma_{j}\right)\right)\right] \\ &= \sum_{i=1}^{n}\sum_{j=1}^{l}\mathsf{E}\left[M_{ij}\right]\log\left(c_{j}g\left(x_{i}|\mu_{j},\sigma_{j}\right)\right) \\ &= \underbrace{\sum_{i,j}\mathsf{E}\left[M_{ij}\right]\log\left(c_{j}\right)}_{1} + \underbrace{\sum_{i,j}\mathsf{E}\left[M_{ij}\right]\log\left(g\left(x_{i}|\mu_{j},\sigma_{j}\right)\right)}_{2} \end{aligned}$$

- Substitute E-step results for $E[M_{ij}]$.
- Maximize (1) and (2) separately w. r. t. c_j and μ_j, σ_j .

Maximizing (1):

$$c_j := \frac{1}{n} \sum_i \mathsf{E}\left[M_{ij}\right]$$

Maximizing (2): For 1D Gaussian model, analytic maximization gives

$$\widetilde{\mu}_{j} = \frac{\sum_{i=1}^{n} x_{i} \mathsf{E}[M_{ij}]}{\sum_{i=1}^{n} \mathsf{E}[M_{ij}]}$$
$$\widetilde{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \widetilde{\mu}_{j})^{2} \mathsf{E}[M_{ij}]}{\sum_{i=1}^{n} \mathsf{E}[M_{ij}]}$$

 \rightarrow weighted form of the standard ML estimators.

EM algorithm: Summary

Notation:
$$Q(\boldsymbol{\theta}, \boldsymbol{\tilde{\theta}}) := \mathsf{E}_{\mathbf{M}|\mathbf{x}, \boldsymbol{\tilde{\theta}}} \left[l_{\mathbf{M}} \left(\boldsymbol{\theta} \right) \right]$$

EM algorithm:

- E-step:
 - 1. Substitute current parameter estimates $\tilde{\theta}$ into model.
 - 2. Estimate expectations $E[M_{ij}]$.
 - 3. Substitute estimates into log-likelihood. This gives Q as function of θ .
- M-step:

Parameter estimation: Maximize $Q(\theta, \tilde{\theta})$ w. r. t. θ .

Observation: This does not seem to be limited to a specific model (like Gaussian mixtures). Can it be generalized?

EM: General case

When can EM be applied?

If we can define hidden variables ${\bf M}$ such that

- The joint density $p\left(\mathbf{x}, \mathbf{M} | \boldsymbol{\theta}\right)$ is known.
- Expected values of the hidden variables can be estimated from a given model configuration.
- Given estimates for the hidden variables, ML estimation is possible.

When do we want to apply EM for ML estimation? If

- ..., ML is hard for $p(\mathbf{x}|\boldsymbol{\theta})$
- ... ML is easy for $p(\mathbf{x}, \mathbf{M}|\boldsymbol{\theta})$ when we know M.
- \bullet ... we can efficiently compute expectations for M.

The two log-likelihoods

The density of the augmented data (\mathbf{x}, \mathbf{M}) is:

$$p(\mathbf{x}, \mathbf{M}|\boldsymbol{\theta}) = p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta}) p(\mathbf{x}|\boldsymbol{\theta})$$

This means we deal with two different log-likelihoods:

• The one we are actually interested in:

$$l\left(\boldsymbol{\theta}\right) = \log\left(p\left(\mathbf{x}|\boldsymbol{\theta}\right)\right)$$

• The one including the hidden variables:

$$l_{\mathbf{M}}(\boldsymbol{\theta}) = \log\left(p\left(\mathbf{x}, \mathbf{M} | \boldsymbol{\theta}\right)\right)$$

 $l(\theta)$ is constant w.r.t. the expectation $\mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\theta}}[.]$ in the algorithm. $l_{\mathbf{M}}(\theta)$ is dependent on hidden variables \mathbf{M} .

Proof of Convergence

What we want to show: $l(\boldsymbol{\theta}) > l(\tilde{\boldsymbol{\theta}})$.

Rewrite $l(\theta)$ using definition of conditional prob.:

$$l(\boldsymbol{\theta}) = \log \left(p(\mathbf{x}|\boldsymbol{\theta}) \right) = \log \left(\frac{p(\mathbf{x}, \mathbf{M}|\boldsymbol{\theta})}{p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta})} \right)$$
$$= l_{\mathbf{M}}(\boldsymbol{\theta}) - \log \left(p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta}) \right)$$

Apply the expectation:

$$\begin{split} \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[l\left(\boldsymbol{\theta}\right)\right] &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[l_{\mathbf{M}}\left(\boldsymbol{\theta}\right)\right] - \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\boldsymbol{\theta}\right)\right)\right] \\ \Leftrightarrow \quad l\left(\boldsymbol{\theta}\right) &= Q(\boldsymbol{\theta},\tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\boldsymbol{\theta}\right)\right)\right] \end{split}$$

Proof of convergence

We want to show that this is larger than

$$l(\tilde{\boldsymbol{\theta}}) = Q(\tilde{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M}|\mathbf{x}, \tilde{\boldsymbol{\theta}}} \left[\log \left(p\left(\mathbf{M} | \mathbf{x}, \tilde{\boldsymbol{\theta}} \right) \right) \right]$$

First term Q: Two possibilities,

- 1. Q is already maximal (algorithm converged).
- 2. Otherwise: $Q(\boldsymbol{\theta}, \boldsymbol{\tilde{\theta}}) > Q(\boldsymbol{\tilde{\theta}}, \boldsymbol{\tilde{\theta}})$.

For the second term holds:

$$\mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}\right)\right)\right] \ge \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\left(\mathbf{M}|\mathbf{x},\boldsymbol{\theta}\right)\right)\right] \quad (*)$$

Proof of convergence

Summary:

$$\begin{split} l\left(\boldsymbol{\theta}\right) &= Q(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M} \mid \mathbf{x}, \tilde{\boldsymbol{\theta}}} \left[\log\left(p\left(\mathbf{M} \mid \mathbf{x}, \boldsymbol{\theta}\right)\right) \right] \\ &> Q(\tilde{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}) - \mathsf{E}_{\mathbf{M} \mid \mathbf{x}, \tilde{\boldsymbol{\theta}}} \left[\log\left(p\left(\mathbf{M} \mid \mathbf{x}, \tilde{\boldsymbol{\theta}}\right)\right) \right] \\ &= l(\tilde{\boldsymbol{\theta}}) \end{split}$$

We're done, except for (*).

Proof of (*): Use Jensen's inequality: If f is a convex function then $\mathsf{E}[f(X)] \ge f(\mathsf{E}[X])$ for any RV X. The log function is concave, so $\mathsf{E}[\log(X)] \le \log(\mathsf{E}[X])$.

Abbreviate
$$p := p(\mathbf{M}|\mathbf{x}, \boldsymbol{\theta})$$
 and $\tilde{p} := p(\mathbf{M}|\mathbf{x}, \tilde{\boldsymbol{\theta}})$.

$$\begin{split} \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(p\right)\right] &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\frac{p}{\tilde{p}}\cdot\tilde{p}\right)\right] \\ &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\frac{p}{\tilde{p}}\right)\right] + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &\leq \log\left(\mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\frac{p}{\tilde{p}}\right]\right) + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &= \log\left(\sum\tilde{p}\cdot\frac{p}{\tilde{p}}\right) + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &= \log(\sum_{i=1}^{n}p_{i}) + \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \\ &= \mathsf{E}_{\mathbf{M}|\mathbf{x},\tilde{\boldsymbol{\theta}}}\left[\log\left(\tilde{p}\right)\right] \quad \Box \end{split}$$

Convergence results

Theoretical convergence guarantees:

- What we have shown above: The log-likelihood increases with each iteration. This does not imply convergence to local maximum.
- For sufficiently regular log-likelihoods, the algorithm always converges to a *local* maximum of the log-likelihood.

What can go wrong: Like any gradient-type algorithm, it can get stuck in a saddle point or even a local minimum. Note:

- This is a *scale problem*. It happens when the gradient step is too large to resolve a local maximum and oversteps.
- Can be prevented by requiring regularity conditions.
- Only happens for numerical M-step.

Convergence in practice

Hard to analyze:

- Cost function (log-likelihood) changes between steps.
- Influence of hidden variables is not entirely understood.

Local minima/saddle points: Convergence to these points is a theoretical possibility, but usually not a practical problem.

Worst problem: Initialization. EM results tend to be highly dependent on initial values.

Common strategy: Initialize with random values. Rerun algorithm several times and choose solution which has the largest likelihood.

k-Means algorithm

Simplify Gaussian mixture model EM:

- 1. Assume that all Gaussians have the same variance.
- 2. Use hard assignments instead of expectations.

Resulting algorithm: Alternate steps

- 1. For each class, choose all assigned data values and average them. (\rightarrow ML estimation of Gaussian mean for hard assignments.)
- 2. Assign each value to class under which its probability of occurrence is largest.

Hence the name: For k classes, algorithm iteratively adjust means (= class averages).

Some history

- **EM:** Introduced by Dempster, Laird and Rubin in 1977. Previously known as Baum-Welch algorithm for Hidden Markov Models.
- **k-Means:** Also known as Lloyd-Max-Algorithm in vector quantization. In 1973, Bezdek introduced a 'fuzzy' version of *k*-Means which comes very close to EM for mixture models.
- **EM convergence:** Dempster, Laird and Rubin proved a theorem stating that EM always converges to a local maximum, but their proof was wrong. In 1983, Wu gave a number of regularity conditions sufficient to ensure convergence to a local maximum.