
Support Vector Machine (SVM)

Extending the perceptron idea: use a linear classifier with
margin and a non-linear feature transformation .

m
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Lagrangian Optimization Theory

Optimization under constraints (Primal Problem):

Given an optimization problem with domain Ω ⊆ Rd,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m

The generalized Lagrangian function is defined as

L(w,α,β) = f(w) +
k∑

i=1

αigi(w) +
m∑

i=1

βihi(w)
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Lagrangian Dual Problem (1797)

Definition (Langrangian Dual Problem):

The respective Lagrangian dual problem is given by

maximize θ(α,β),
subject to αi ≥ 0, i = 1, . . . , k

where θ(α,β) = inf
w∈Ω

L(w,α,β)

The value of the objective function at the optimal solution is
called the value of the problem .

The difference between the values of the primal and the dual
problems is known as the duality gap.
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Upper Bound on Dual Costs

Theorem: Let w ∈ Ω be a feasible solution of the primal pro-
blem of the previous definition and (α,β) a feasible solution
of the respective dual problem. Then f(w) ≥ θ(α,β).

Proof:

θ(α,β) = inf
u∈Ω

L(u,α,β)

≤ L(w,α,β)

= f(w) +
k∑

i=1

αi︸︷︷︸
≥0

gi(w)︸ ︷︷ ︸
≤0

+
m∑

j=1

βj hj(w)︸ ︷︷ ︸
=0

≤ f(w)

The feasibility of w implies gi(w) ≤ 0 and hi(w) = 0, while
the feasibility of (α,β) implies αi ≥ 0.
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Duality Gap

Corollary: The value of the dual problem is upper bounded
by the value of the primal problem,

sup {θ(α,β) : α ≥ 0} ≤ inf {f(w) : g(w) ≤ 0,h(w) = 0}

Theorem: The triple (w∗,α∗,β∗) is a saddle point of the La-
grangian function for the primal problem, if and only if its
components are optimal solutions of the primal and dual pro-
blems and if there is no duality gap , i.e., the primal and dual
problems having the value

f(w∗) = θ(α∗,β∗)
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Strong Duality

Theorem: Given an optimization problem with convex objec-
tive function f and convex domain Ω ⊆ Rd,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m

where the gi and hi are affine functions, that is

h(w) = Aw − b,

for some matrix A and vector b, then the duality gap is zero.
(This case applies to SVMs!)

Remark: If the functions gi(w) are convex then strong duality holds pro-
vided some constraint qualifications are fulfilled (e.g. Slater condition).
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Kuhn-Tucker Conditions (1951)

Theorem : Given an optimization problem with convex do-
main Ω ⊆ Rd,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m

with f ∈ C1 convex and gi, hi affine, necessary and sufficient
conditions for a normal point w∗ to be an optimum are the
existence of α∗, β∗ such that

∂L(w∗,α∗,β∗)
∂w

= 0
∂L(w∗,α∗,β∗)

∂β
= 0

α∗i gi(w∗) = 0, gi(w∗) ≤ 0, α∗i ≥ 0, i = 1, . . . , k
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Support Vector Machines (SVM)

Idea: linear classifier with margin and feature transformation.

Transformation from original feature space to nonlinear fea-
ture space.

yi =φ(xi) e.g. Polynomial, Radial Basis Function, ...

φ : Rd→ Re with d� e

zi =
{

+1
−1

if xi in class
{

y1

y2

Training vectors should be linearly separable after mapping!

Linear discriminant function:

g(y) = wTy + w0
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Support Vector Machine (SVM)

Find hyperplane that maximizes the margin m with

zi g(yi) = zi(wTy + w0) ≥ m for all yi ∈ Y

m

Vectors yi with zig(yi) = m are the support vectors .
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Maximal Margin Classifier

Invariance: assume that the weight vector w is normalized
(‖w‖ = 1) since a rescaling (w, w0) ← (λw, λw0),m ← λm

does not change the problem.

Condition: zi =

{
+1 wTyi + w0 ≥ m

−1 wTyi + w0 ≤ −m
∀i

Objective: maximize margin m s.t. joint condition
zi (wTyi + w0) ≥ m is met.

Learning problem: Find w with ||w|| = 1, such that the margin
m is maximized.

maximize m

subject to ∀yi ∈ Y : zi(wTyi + w0) ≥ m
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SVM Learning
What is the margin m ?

Consider two points y+,y−

of class 1,2 which are located
on both sides of the margin
boundaries.

Transformation of objective:
rescaling w← w

m, w0 ← w0
m ⇒

yields the constraints

zi(wTyi + w0) ≥ 1

Margin:

m = 1
2‖w‖(w

Ty+−wTy−) = 1
‖w‖

y+

y−

y+−y−

y1

y2

m

w

m = 1
‖w‖ follows from inserting ±(wTy± + w0) = 1

⇒ maximizing the margin corresponds to minimizing the norm ||w|| for mar-

gin m = 1.
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SVM Lagrangian

Minimize ||w|| for a given margin m = 1

minimize T (w) = 1
2w

Tw
subject to zi(wTyi + w0) ≥ 1

Generalized Lagrange Function:

L(w, w0,α) =
1
2
wTw −

n∑
i=1

αi

[
zi(wTyi + w0)− 1

]

Functional and geometric margin: The problem formulation
with margin m = 1 is called the functional margin setting;
The original formulation refers to the geometric margin.
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Stationarity of Lagrangian
Extremality condition:

∂L(w, w0,α)
∂w

= w −
∑
i≤n

αiziyi = 0 ⇒ w =
∑
i≤n

αiziyi

∂L(w, w0,α)
∂w0

= −
∑
i≤n

αizi = 0

Resubstituting ∂L
∂w = 0, ∂L

∂w0
= 0 into the Lagrangian function L(w, w0,α)

L(w, w0,α) =
1
2
wTw −

∑
i≤n

αi

[
zi(wTyi + w0)− 1

]
=

1
2

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj −

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj +

∑
i≤n

αi

=
∑
i≤n

αi −
1
2

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj (note the scalar product!)
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Dual Problem

The Dual Problem for support vector learning is

maximize W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 zizjαiαjyT

i yj

subject to ∀i αi ≥ 0 ∧
∑n

i=1 ziαi = 0

The optimal hyperplane w∗, w∗
0 is given by

w∗ =
n∑

i=1

α∗i ziyi, w∗
0 = −1

2

(
min

i:zi=1
w∗Tyi + max

i:zi=−1
w∗Tyi

)
where α∗ are the optimal Lagrange multipliers maximizing the
Dual Problem.
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Support Vectors

The Kuhn-Tucker Conditions for the maximal margin SVM are

α∗i (zig
∗(yi)− 1) = 0, i = 1, . . . , n

α∗i ≥ 0, i = 1, . . . , n

zig
∗(yi)− 1 ≥ 0, i = 1, . . . , n

The first one is known as the Kuhn-Tucker complementary
condition . The conditions imply

zig
∗(yi) = 1 ⇒ α∗i ≥ 0 Support Vectors (SV)

zig
∗(yi) 6= 1 ⇒ α∗i = 0 Non Support Vectors
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Optimal Decision Function

Sparsity:

g∗(y) = w∗Ty + w∗
0 =

n∑
i=1

ziα
∗
iyi

Ty + w∗
0

=
∑
i∈SV

ziα
∗
iyi

Ty + w∗
0

Remark: only few support vectors enter the sum to evaluate
the decision function! ⇒ efficiency and interpretability

Optimal margin: wTw =
∑
i∈SV

α∗i
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Soft Margin SVM

For each trainings vector yi ∈ Y a slack variable ξi is introdu-
ced to measure the violation of the margin constraint.

Find hyperplane that maximizes the margin zig
∗(yi) ≥ m(1−ξi)

m

ξ2
ξ1

ξ3
ξ4

Vectors yi with zig
∗(yi) = m(1−ξi) are called support vectors .
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Learning the Soft Margin SVM

Slack variables are penalized by L1 norm.

minimize T (w, ξ) = 1
2w

Tw + C
∑n

i=1 ξi

subject to zi(wTyi + w0) ≥ 1− ξi

ξi ≥ 0

C controls the amount of constraint violations vs. margin maximization!

Lagrange function for soft margin SVM

L(w, w0, ξ,α,β) =
1
2
wTw + C

n∑
i=1

ξi

−
n∑

i=1

αi

[
zi(wTyi + w0)− 1 + ξi

]
−

n∑
i=1

βiξi
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Stationarity of Primal Problem

Differentiation:

∂L(w, w0, ξ,α,β)
∂w

= w −
n∑

i=1

αiziyi = 0 ⇒ w =
n∑

i=1

αiziyi

∂L(w, w0, ξ,α,β)
∂ξi

= C − αi − βi = 0
∂L(w, w0, ξ,α,β)

∂w0
= −

n∑
i=1

αizi = 0

Resubstituting into the Lagrangian function L(w, w0, ξ,α,β)
yields

L(w, w0, ξ,α,β) = 1
2w

Tw + C
∑n

i=1 ξi

−
∑n

i=1 αi

[
zi(wTyi + w0)− 1 + ξi

]
−

∑n
i=1 βiξi
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L(w, w0, ξ,α,β) = 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj + C
∑n

i=1 ξi

−
∑n

i=1

∑n
j=1 αiαjzizjyT

i yj

+
∑n

i=1 αi(1− ξi)−
∑n

i=1 βiξi

=
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj

+
∑n

i=1(C − αi − βi︸ ︷︷ ︸
=∂L

∂ξi
=0

)ξi

=
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj
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Constaints of the Dual Problem

The dual objective function is the same as for the maximal mar-
gin SVM. The only difference is the constraint

C − αi − βi = 0

Together with βi ≥ 0 it implies

αi ≤ C

The Kuhn-Tucker complementary conditions

αi(zi(wTyi + w0)− 1 + ξi) = 0, i = 1, . . . , n

ξi(αi − C) = 0, i = 1, . . . , n

imply that nonzero slack variables can only occur when αi = C.
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Dual Problem of Soft Margin SVM

The Dual Problem for support vector learning is

maximize W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 zizjαiαjyT

i yj

subject to
∑n

j=1 zjαj = 0 ∧ ∀i C ≥ αi ≥ 0

The optimal hyperplane w∗ is given by

w∗ =
n∑

i=1

α∗i ziyi

where α∗ are the optimal Lagrange multipliers maximizing the
Dual Problem.

α∗i > 0 holds only for support vectors .
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Linear Programming Support Vector Machines

Idea: Minimize an estimate of the number of positive multipliers∑n
i=1 αi which improves bounds on the generalization error.

The Lagrangian for the LP-SVM is

minimize W (α, ξ) =
∑n

i=1 αi + C
∑n

i=1 ξi

subject to zi

[∑n
j=1 αjyT

i yj + w0

]
≥ 1− ξi,

αi ≥ 0, ξi ≥ 0, 1 ≤ i ≤ n

Advantage: efficient LP solver can be used.

Disadvantage: theory is not as well understood as for standard
SVMs.
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Non–Linear SVMs

Feature extraction by non linear transformation y = φ(x)

Problem:
yT

i yj = φT(xi)φ(xj)
is the inner product in a high dimensional space.

A kernel function is defined by

∀x, z ∈ Ω : K(x, z) = φT(x)φ(z)

Using the kernel function the discriminant function becomes

g(x) =
n∑

i=1

αizi K(xi,x)︸ ︷︷ ︸
replaces yT

i y
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Characterization of Kernels

For any symmetric matrix K(xi,xj)|ni,j=1 (Gram matrix) there
exists an eigenvector decomposition

K = V ΛV T .

V : orthogonal matrix of eigenvectors (vti)|ni=1

Λ: diagonal matrix of eigenvalues λt

Assume all eigenvalues are nonnegative and consider mapping

φ : xi→
(√

λtvti

)n

t=1
∈ Rn, i = 1, . . . , n

Then it follows

φT(xi)φ(xj) =
n∑

t=1

λtvtivtj =
(
V ΛV T

)
ij

= Kij = K(xi,xj)
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Positivity of Kernels

Theorem: Let Ω be a finite input space with K(x, z) a symme-
tric function on Ω. Then K(x, z) is a kernel function if and only
if the matrix

K = (K(xi,xj))
n
i,j=1

is positive semi-definite (has only non-negative eigenvalues).

Extension to infinite dimensional Hilbert Spaces:

< φ(x), φ(z) >=
∞∑

i=1

λiφi(x)φi(z)
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Mercer’s Theorem

Theorem (Mercer): Let Ω be a compact subset of Rn. Suppo-
se K is a continuous symmetric function such that the integral
operator TK : L2(X)→ L2(X),

(TKf)(·) =
∫

Ω

K(·,x)f(x)dx,

is positive, that is
∫

Ω×Ω

K(x, z)f(x)f(z)dxdz > 0 ∀ f ∈ L2(Ω)

Then we can expand K(x, z) in a uniformly convergent series
in terms of TK ’s eigen-functions φj ∈ L2(Ω), with ||φj||L2 = 1
and λj > 0.
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Possible Kernels

Remark: Each kernel function, that hold Mercer’s conditions
describes an inner product in a high dimensional space. The
kernel function replaces the inner product.

Possible Kernels:

a) K(x, z) = exp
(
−||x− z||2

2σ2

)
(RBF Kernel)

b) K(x, z) = tanhκxz− b (Sigmoid Kernel)

c) K(x, z) = (xz)d (Polynomial Kernel)

K(x, z) = (xz + 1)d

d) K(x, z) : string kernels for sequences
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Kernel Engineering

Kernel composition rules: Let K1, K2 be kernels over Ω ×
Ω,Ω ⊆ Rd, a ∈ R+, f(.) a real-vealued function φ : Ω → Re

with K3 a kernel over Re × Re.

Then the following functions are kernels:

1. K(x, z) = K1(x, z) + K2(x, z),
2. K(x, z) = aK1(x, z),
3. K(x, z) = K1(x, z)K2(x, z),
4. K(x, z) = f(x)f(z),
5. K(x, z) = K3(φ(x), φ(z)),
6. K(x, z) = p(K1(x, z)), (p(x) is a polynomial with positive co-

efficients)
7. K(x, z) = exp(K1(x, z)),
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Example: Hand Written Digit Recognition

• 7291 training images und 2007 test images (16x16 pixel, 256
gray values)

Classification method test error
human classification 2.7 %
perceptron 5.9 %
support vector machines 4.0 %
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SVMs for Secondary Structure Prediction

Proteins are represented in “zeroth order” by the percentage
of amino-acids in the polypeptide chain; “vectorial” repre-
sentation in R20

Protein structure problem: sequence as primary structure,
local motives as secondary structure, protein folds as ter-
nary structure.

SVM classification typically use the RBF kernel

k(x,y) = exp
(
−γ‖x− y‖2

)
Secondary structure prediction as a multiclass problem: De-

tect classes helix (H), sheet (E) and coil (C)
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Accuracy measure: Q3 = % of correct 3-state symbols, i.e.

Q3 =
#correctly predicted residues

total # of residues
· 100

Practical Problem: How to apply SVMs for k > 2 classes?
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Linear Discriminants and the Multicategory
Case

FIGURE 5.3. Linear decision boundaries for a four-class problem. The Top figure shows ωi/not ωi dichotomies while the bottom
figure shows ωi/ωj dichotomies and the corresponding decision boundaries Hij . The pink regions have ambiguous category
assignments. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.

Idea: it is often preferable to reformulate the multiclass problem as (k − 1)
“class α – not class α” dichotomies or k(k−1)/2 “class α or β” dichotomies.

Problem : some areas in feature space are ambiguously classified.
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Experimental Results

• PHD (by B. Rost et al., Neural Net-
work based approach) – 72-74%
Q3

• Psi-pred (by D. T. Jones et al.,
Neural Network based approach) –
76-78% Q3

• The extensive study by Ward et
al. (Bioinformatics, 2003) with dif-
ferent SVM realization reports re-
sults 73-77% Q3

• Two-layer classification strategy
with position-specific scoring sche-
me (Guo et al., Proteins, 2004)).
Accuracy ranges from 78% – 80%.

Histogram of Q3 scores for 121 test pro-

teins (Ward et al., Bioinformatics 19:13, 2003)
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Machine Learning on Audio Data

Project with the company Phonak (Stäfa), producer of hearing
aids.

Task: Given an accoustic environment, find appropriate control
settings for the hearing aid:

• Speech understanding in silent and noisy environments
• Natural hearing of music and sounds in nature
• Comfortable setting for noisy environments
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Classification of Audio Data

Current setting: Four sound classes are defined correspon-
ding to the basic hearing goals:

→ Speech
→ Speech in Noise
→ Music
→ Noise

Goal: Let the hearing instrument autonomously decide which
environment you are in!

Question: Are the four sound classes supported by sound sta-
tistics?
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Features from Audio Data

Feature set: Common features are

• distribution of the spectrum
• tonality
• rhythm
• estimated signal to noise ratio (SNR)
• ... and others

Strong computational constraints in the hearing aid!

• Very little computational power and memory is available.
• Delay must not exceed a few ten miliseconds

→ Complex features can only be approximated.
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Classification Quality for different Classifiers
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Linear Discriminant Analysis

• Speech and most music files can be clearly separated.

• Speech in noise and noise are substantially overlapping.
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Feature importance

Relative feature importance for a sparse and a dense linear
model:

• All of the currently used features are used ...

• ... but not all features have the same importance.
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Machine Learning: Topic Chart

• Core problems of pattern recognition

• Bayesian decision theory

• Perceptrons and Support vector machines

• Data clustering

• Dimension reduction
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Supervised vs. Unsupervised learning

Training data: A sample from the data source with the correct
classification/regression solution already assigned.

Supervised learning = Learning based on training data.

Two steps:

1. Training step: Learn classifier/regressor from training data.
2. Prediction step: Assign class labels/functional values to

test data.

Perceptron, LDA, SVMs, linear/ridge/kernel ridge regression
are all supervised methods.

Unsupervised learning: Learning without training data.
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Unsupervised learning

Examples:

• Data clustering. (Some authors do not distinguish between
clustering and unsupervised learning.)
• Dimension reduction techniques.

Data clustering: Divide input data into groups of similar
points.
→ Roughly the unsupervised counterpart to classification.

Note the difference:

• Supervised case: Fit model to each class of training points,
then use models to classify test points.
• Clustering: Simultaneous inference of group structure and

model.
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Grouping or Clustering: the k-Means Problem

Given are d-dimensional sample vectors x1, . . . ,xn ∈ Rd

Define ...

• ... assignment vector c ∈ {1, . . . , k}n

• ... prototypes yν ∈ Y ⊂ Rd (ν ∈ {1, . . . , k})

Problem : Find c and yν such that the clustering costs are mi-
nimized (ci := c(xi))

Rkm (c,Y) =
n∑

i=1

||xi − yci
||2

Mixed combinatorial and continuous optimization problem
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k-Means Algorithm
1. Choose k sample objects randomly as prototypes, i.e., se-

lect Y = {x1, . . . ,xk}

2. Iterate :

• Keep prototypes yci
fixed and assign sample vectors xi to

nearest prototype

ci = arg min
ν∈{1,...,k}

||xi − yci
||2

• Keep assignments ci fixed and estimate prototypes

yν =
1
nν

∑
i:ci=ν

xi with nν = |{i : ci = ν}|
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Mixture models

Def.: A finite mixture model is a probability density of the form

p (x) =
l∑

j=1

cjpj (x)

where the pj are probability densities on a common domain
Ω, cj ≥ 0 constants and

∑
j cj = 1.

Remarks:

• p is a density on Ω.
• If all components are parametric models, then so is p.
• Most common: Gaussian mixture, pj (x) := g (x|µj, σj).
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Mixture models: Interpretation

Recall: Addition on probabilities↔ logical OR.

Represented data source:

• Source = set of component sources (modeled by the pj)
• Each data value is drawn from exactly one component

source.
• cj: Probability of draw from pj.

Application to clustering: Natural model if...

1. each data point belongs to exactly one group.
2. we have some idea what the group densities look like.
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Gaussian mixture model

p (x|µµµ,σσσ) =
l∑

j=1

cjg (x|µj, σj)
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Parametric mixtures: Inference

Inference: How can we estimate the model parameters
cj, µj, σj?

We refer to the source information (i.e.,which component was
a data point drawn from) as assignments.

Problem:

• Parameters can be estimated by ML if assignments are
known.
• Assignments can be estimated from model if parameters

are known.

Idea: Iterative approach.
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Expectation-Maximization algorithm

Estimate Gaussian mixture from data values x1, . . . , xn.

Approach: Regard class assignments as random variables.

Notation: Assignment variables Mij :=

{
1 xi drawn from pj

0 otherwise

Algorithm: Iterates two steps:

• E-step: Estimate expected values for Mij from current mo-
del configuration.
• M-step: Estimate model parameters from current assi-

gnment probabilities E [Mij].

This will require some more explanation.
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Gaussian mixture: E-step

Current model parameters: θ̃̃θ̃θ = (c̃, µ̃̃µ̃µ, σ̃̃σ̃σ) (from last M-step)

Compute expectations:

E
[
Mij

∣∣∣x, θ̃̃θ̃θ
]

= Pr{xi was drawn from pj}

=
cjp(xi|θ̃j)∑l

k=1 ckp(xi|θ̃k)
=

cjg (xi|µ̃j, σ̃j)∑l
k=1 ckg (xi|µ̃k, σ̃k)

Jargon: The binary assignments (”hard assignments”) are re-
laxed to values E [Mij] ∈ [0, 1] (”soft assignments”).
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Gaussian mixture: M-step

Task: Estimate model parameters given assignments.

Easy for hard assignments:

• Select all xi with Mij = 1.
• Perform ML estimation on this data subset.

Can we do it for soft assignments? The log-likelihood is

lM (θ) =
n∑

i=1

log

 l∑
j=1

Mijcjg (xi|µj, σj)


Technical problem: We want to substitute expected values

for Mij. We can apply an expectation to lM, but how do we
get it into the log?
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Gaussian mixture: M-step

Trick: (This is a true classic.)

n∑
i=1

log

 l∑
j=1

Mijcjg (xi|µj, σj)

 =
n∑

i=1

l∑
j=1

Mij log (cjg (xi|µj, σj))

Explanation: For all i, Mij0 = 1 for exactly one j0. So:

log

 l∑
j=1

Mijfj

 = log (fj0) = Mij0 log (fj0) =
∑

j

Mij log (fj)

Note: This introduces an error, because it is only valid for hard
assignments. We relax assignments, and relaxation differs
inside and outside logarithm.
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Gaussian mixture: M-step

Expected log-likelihood:

EM|x,θ̃ [l (θ)] = E

 n∑
i=1

l∑
j=1

Mij log (cjg (xi|µj, σj))


=

n∑
i=1

l∑
j=1

E [Mij] log (cjg (xi|µj, σj))

=
∑
i,j

E [Mij] log (cj)︸ ︷︷ ︸
1

+
∑
i,j

E [Mij] log (g (xi|µj, σj))︸ ︷︷ ︸
2

• Substitute E-step results for E [Mij].
• Maximize (1) and (2) separately w. r. t. cj and µj, σj.
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Gaussian mixture: M-step

Maximizing (1):

cj :=
1
n

∑
i

E [Mij]

Maximizing (2): For 1D Gaussian model, analytic maximization
gives

µ̃j =
∑n

i=1 xiE [Mij]∑n
i=1 E [Mij]

σ̃2
j =

∑n
i=1 (xi − µ̃j)

2 E [Mij]∑n
i=1 E [Mij]

→ weighted form of the standard ML estimators.
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EM algorithm: Summary

Notation: Q(θθθ, θ̃̃θ̃θ) := EM|x,θ̃ [lM (θ)]

EM algorithm:

• E-step:
1. Substitute current parameter estimates θ̃̃θ̃θ into model.
2. Estimate expectations E [Mij].
3. Substitute estimates into log-likelihood. This gives Q as

function of θθθ.
• M-step:

Parameter estimation: Maximize Q(θθθ, θ̃̃θ̃θ) w. r. t. θθθ.

Observation: This does not seem to be limited to a specific
model (like Gaussian mixtures). Can it be generalized?
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EM: General case

When can EM be applied?
If we can define hidden variables M such that

• The joint density p (x,M|θθθ) is known.
• Expected values of the hidden variables can be estimated

from a given model configuration.
• Given estimates for the hidden variables, ML estimation is

possible.

When do we want to apply EM for ML estimation? If . . .

• . . . ML is hard for p (x|θθθ)
• . . . ML is easy for p (x,M|θθθ) when we know M.
• . . . we can efficiently compute expectations for M.

Visual Computing: Joachim M. Buhmann — Machine Learning 258/267



The two log-likelihoods

The density of the augmented data (x,M) is:

p (x,M|θθθ) = p (M|x, θθθ) p (x|θθθ)

This means we deal with two different log-likelihoods:

• The one we are actually interested in:

l (θθθ) = log (p (x|θθθ))

• The one including the hidden variables:

lM (θθθ) = log (p (x,M|θθθ))

l (θθθ) is constant w. r. t. the expectation EM|x,θ̃θθ [ . ] in the
algorithm. lM (θθθ) is dependent on hidden variables M.
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Proof of Convergence

What we want to show: l (θθθ) > l(θ̃θθ).

Rewrite l (θθθ) using definition of conditional prob.:

l (θθθ) = log (p (x|θθθ)) = log
(

p (x,M|θθθ)
p (M|x, θθθ)

)
= lM (θθθ)− log (p (M|x, θθθ))

Apply the expectation:

EM|x,θ̃θθ [l (θθθ)] = EM|x,θ̃θθ [lM (θθθ)]− EM|x,θ̃θθ [log (p (M|x, θθθ))]

⇔ l (θθθ) = Q(θθθ, θ̃̃θ̃θ)− EM|x,θ̃θθ [log (p (M|x, θθθ))]
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Proof of convergence

We want to show that this is larger than

l(θ̃θθ) = Q(θ̃θθ, θ̃̃θ̃θ)− EM|x,θ̃θθ

[
log

(
p

(
M|x, θ̃θθ

))]
First term Q: Two possibilities,

1. Q is already maximal (algorithm converged).
2. Otherwise: Q(θθθ, θ̃̃θ̃θ) > Q(θ̃θθ, θ̃̃θ̃θ).

For the second term holds:

EM|x,θ̃θθ

[
log

(
p

(
M|x, θ̃θθ

))]
≥ EM|x,θ̃θθ [log (p (M|x, θθθ))] (∗)
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Proof of convergence

Summary:

l (θθθ) = Q(θθθ, θ̃̃θ̃θ)− EM|x,θ̃θθ [log (p (M|x, θθθ))]

> Q(θ̃θθ, θ̃̃θ̃θ)− EM|x,θ̃θθ

[
log

(
p

(
M|x, θ̃θθ

))]
= l(θ̃θθ)

We’re done, except for (∗).

Proof of (∗): Use Jensen’s inequality: If f is a convex function
then E [f (X)] ≥ f (E [X]) for any RV X. The log function is
concave, so E [log (X)] ≤ log (E [X]).
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Abbreviate p := p (M|x, θθθ) and p̃ := p
(
M|x, θ̃θθ

)
.

EM|x,θ̃θθ [log (p)] = EM|x,θ̃θθ

[
log

(
p

p̃
· p̃

)]
= EM|x,θ̃θθ

[
log

(
p

p̃

)]
+ EM|x,θ̃θθ [log (p̃)]

≤ log
(

EM|x,θ̃θθ

[
p

p̃

])
+ EM|x,θ̃θθ [log (p̃)]

= log
(∑

p̃ · p
p̃

)
+ EM|x,θ̃θθ [log (p̃)]

= log(
∑

p︸ ︷︷ ︸
=1

) + EM|x,θ̃θθ [log (p̃)]

= EM|x,θ̃θθ [log (p̃)] �
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Convergence results

Theoretical convergence guarantees:

• What we have shown above: The log-likelihood increases
with each iteration. This does not imply convergence to lo-
cal maximum.
• For sufficiently regular log-likelihoods, the algorithm always

converges to a local maximum of the log-likelihood.

What can go wrong: Like any gradient-type algorithm, it can
get stuck in a saddle point or even a local minimum. Note:

• This is a scale problem. It happens when the gradient step
is too large to resolve a local maximum and oversteps.
• Can be prevented by requiring regularity conditions.
• Only happens for numerical M-step.
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Convergence in practice

Hard to analyze:

• Cost function (log-likelihood) changes between steps.
• Influence of hidden variables is not entirely understood.

Local minima/saddle points: Convergence to these points is
a theoretical possibility, but usually not a practical problem.

Worst problem: Initialization. EM results tend to be highly
dependent on initial values.

Common strategy: Initialize with random values. Rerun algo-
rithm several times and choose solution which has the largest
likelihood.
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k-Means algorithm

Simplify Gaussian mixture model EM:

1. Assume that all Gaussians have the same variance.
2. Use hard assignments instead of expectations.

Resulting algorithm: Alternate steps

1. For each class, choose all assigned data values and ave-
rage them. (→ ML estimation of Gaussian mean for hard
assignments.)

2. Assign each value to class under which its probability of
occurrence is largest.

Hence the name: For k classes, algorithm iteratively adjust
means (= class averages).
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Some history

EM: Introduced by Dempster, Laird and Rubin in 1977. Pre-
viously known as Baum-Welch algorithm for Hidden Markov
Models.

k-Means: Also known as Lloyd-Max-Algorithm in vector quan-
tization. In 1973, Bezdek introduced a ’fuzzy’ version of k-
Means which comes very close to EM for mixture models.

EM convergence: Dempster, Laird and Rubin proved a theo-
rem stating that EM always converges to a local maximum,
but their proof was wrong. In 1983, Wu gave a number of re-
gularity conditions sufficient to ensure convergence to a local
maximum.
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