

- Core problems of pattern recognition
- Bayesian decision theory
- Perceptrons and support vector machines
- Data clustering
- Dimension reduction

Visual Computing: Joachim M. Buhmann — Machine Learning

184/225

Generalized Linear Discriminant Functions

Linear Discriminant Functions can be written as

$$g(x) = w_0 + \sum_{1 \le i \le d} w_i x_i = (w_0, w)(1, x)^T =: a^T y$$

with generalized coordinates $y = (1, x)^T$, $a = (w_0, w)^T$. Note that the generalized separating hyperplanes contain the origin of the *y*-space!

Quadratic Discriminant Functions have the form

$$g(x) = w_0 + \sum_{i \le d} w_i x_i + \sum_{i \le d} \sum_{j \le d} w_{ij} x_i x_j.$$

The quadratic map $y = (1, x, x^2)^T$ transforms a line in a parabola in three dimensions. A planar split in *y*-space corresponds to a partitioning in *x*-space which is not simply connected.

Linear Separable Two Class Case

Linear Separability:

Visual Computing: Joachim M. Buhmann — Machine Learning

188/225

The Perceptron Criterion

(in generalized coordinates $y = (1, x)^T$, $a = (w_0, w)^T$)

Problem: Solve the inequalities $a^T y_i > 0, \forall i$

Criterion Functions: $J(a; y_1, \ldots, y_n) = \ldots$

- ... number of misclassified samples: poor choice since J is piecewise constant! No gradient!
- ... sum of violating projections.

Perceptron Criterion:

 \mathcal{Y} is the set of misclassified samples.

Perceptron Rule:
$$\Rightarrow a(k+1) = a(k) + \eta(k) \sum_{y \in \mathcal{Y}} y$$

190/225

Perceptron Algorithm (Batch Version) Require: initialize $a, \theta, \eta(\cdot)$ 1: $k \leftarrow 0$ 2: repeat 3: $a \leftarrow a + \sum_{y \in \mathcal{Y}} \eta(k)y$ 4: $k \leftarrow k + 1$ 5: **until** $|\eta(k) \sum_{y \in \mathcal{V}} y| < \theta$ Fixed-Increment Single Sample Perceptron **Require:** initialize $a, k \leftarrow 0$ 1: repeat $k \leftarrow (k+1) \mod n$ if y^k is misclassified by a then $a \leftarrow a + y^k$ end if 6: until all patterns are correctly classified

2:

3:

4:

5:

Defs.:
$$\beta^2 := \max_i ||y_i||^2$$
, $\gamma := \min_i (\hat{a}^T y^i) > 0$
 $\Rightarrow ||a(k+1) - \alpha \hat{a}||^2 \leq ||a(k) - \alpha \hat{a}||^2 - 2\alpha\gamma + \beta^2$
 $= ||a(k) - \alpha \hat{a}||^2 - \beta^2$ for $\alpha = \beta^2/\gamma$

The algorithm converges since $||a(k+1) - \alpha \hat{a}||^2$ decreases at least by the constant β^2 and every error will be corrected.

Bound on the Number of Update Steps:

$$\begin{aligned} \|a(k+1) - \alpha \hat{a}\|^2 &\leq \|a(1) - \alpha \hat{a}\|^2 - k\beta^2 &= 0 \\ \Rightarrow k_0 &= \frac{\|a(1) - \alpha \hat{a}\|^2}{\beta^2} \end{aligned}$$

Choose $a(1) = 0 \Rightarrow k_0 &= \frac{\alpha^2 \|\hat{a}\|^2}{\beta^2} = \frac{\beta^2 \|\hat{a}\|^2}{\gamma^2} = \frac{\max_i \|y_i\|^2 \|\hat{a}\|^2}{\min_i (\hat{a}^T y^i)^2}$

Remark: Examples orthogonal to the solution vector are difficult to learn!

Perceptron Convergence

- **Theorem:** If the training samples are linearly separable, then the sequence of weight vectors $a \leftarrow a + y^k$ will terminate at a solution vector.
- **Proof:** Let \hat{a} be a solution vector, i.e., $\hat{a}^T y_i > 0$, $\forall i$ and let $\alpha > 0$ be a scaling factor. Then it holds:

$$a(k+1) - \alpha \hat{a} = a(k) - \alpha \hat{a} + y^{k}$$

$$\Rightarrow ||a(k+1) - \alpha \hat{a}||^{2} = ||a(k) - \alpha \hat{a}||^{2} + 2(a(k) - \alpha \hat{a})^{T} y^{k} + ||y^{k}||^{2}$$

Since y^k was misclassified the inequality $a^T(k)y^k \leq 0$ holds.

$$\Rightarrow \|a(k+1) - \alpha \hat{a}\|^2 \le \|a(k) - \alpha \hat{a}\|^2 - 2 \underbrace{\alpha \hat{a}^T y^k}_{>0} + \|y^k\|^2$$

 $\hat{a}^T y^k$ dominates $\|y^k\|^2$ for sufficiently large α .

Visual Computing: Joachim M. Buhmann — Machine Learning

193/225

Limitations of Single-Layer Perceptrons

(Minsky & Pappert 1969)

Theorem: A size limited perceptron cannot decide in all cases if parts of a figure are connected or separate.

Proof: The problem is reduced to the XOR problem which is not linearly separable.

 ϕ_1, ϕ_2 are detectors which recognize vertical bars in the upper left and right corner.

Truth Table for the connectivity problem.

Simple (single layer) perceptrons can be trained efficiently since classification errors can be "blamed" to components of the weight vector a in a direct way. *Credit Assignment!*

Visual Computing: Joachim M. Buhmann — Machine Learning

196/225

Nonlinear Transformation in Kernel Space

Support Vector Machine (SVM)

Extending the perceptron idea: use a linear classifier with margin and a non-linear feature transformation.

Lagrangian Optimization Theory

Optimization under constraints (Primal Problem):

Given an optimization problem with domain $\Omega \subseteq \mathbb{R}^d$,

 $\begin{array}{ll} \mbox{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega \\ \mbox{subject to} & g_i(\mathbf{w}) \leq 0, & i = 1, \dots, k \\ & h_i(\mathbf{w}) = 0, & i = 1, \dots, m \end{array}$

The generalized Lagrangian function is defined as

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w}) + \sum_{i=1}^{m} \beta_{i} h_{i}(\mathbf{w})$$

Kuhn-Tucker Conditions (1951)

Theorem: Given an optimization problem with convex domain $\Omega \subseteq \mathbb{R}^d$,

$$\begin{array}{ll} \mbox{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega \\ \mbox{subject to} & g_i(\mathbf{w}) \leq 0, & i = 1, \dots, k \\ & h_i(\mathbf{w}) = 0, & i = 1, \dots, m \end{array}$$

with $f \in C^1$ convex and g_i , h_i affine, necessary and sufficient conditions for a normal point \mathbf{w}^* to be an optimum are the existence of α^* , β^* such that

$$\begin{split} \frac{\partial L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \mathbf{w}} &= 0 \qquad \frac{\partial L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}} = 0\\ \alpha_i^* g_i(\mathbf{w}^*) &= 0, \quad g_i(\mathbf{w}^*) \leq 0, \quad \alpha_i^* \geq 0, \quad i = 1, \dots, k \end{split}$$

Support Vector Machine (SVM)

Find hyperplane that maximizes the $\ensuremath{\text{margin}}\xspace m$ with

$$z_i g(\mathbf{y}_i) = z_i (\mathbf{w}^\mathsf{T} \mathbf{y} + w_0) \geq m \quad ext{for all } \mathbf{y}_i \in \mathcal{Y}$$

Vectors
$$\mathbf{y}_i$$
 with $z_i g(\mathbf{y}_i) = m$ are the support vectors.

Idea: linear classifier with margin and feature transformation.

Transformation from original feature space to nonlinear feature space.

$$\begin{split} \mathbf{y}_i =& \phi(\mathbf{x}_i) \quad \text{e.g. Polynomial, Radial Basis Function, ...} \\ \phi : \mathbb{R}^d \to \mathbb{R}^e \text{ with } d \ll e \\ z_i =& \begin{cases} +1 \\ -1 \end{cases} \text{ if } \mathbf{x}_i \text{ in class } \begin{cases} y_1 \\ y_2 \end{cases} \end{split}$$

Training vectors should be linearly separable after mapping! Linear discriminant function:

$$g(\mathbf{y}) = \mathbf{w}^{\mathsf{T}}\mathbf{y} + w_0$$

Visual Computing: Joachim M. Buhmann — Machine Learning

201/225

Maximal Margin Classifier

Invariance: assume that the weight vector \mathbf{w} is normalized $(||\mathbf{w}|| = 1)$ since a rescaling $(\mathbf{w}, w_0) \leftarrow (\lambda \mathbf{w}, \lambda w_0), m \leftarrow \lambda m$ does not change the problem.

Objective: maximize margin m s.t. joint condition $z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) \ge m$ is met.

Learning problem: Find w with ||w|| = 1, such that the margin m is maximized.

maximize msubject to $\forall \mathbf{y}_i \in \mathcal{Y} : z_i(\mathbf{w}^\mathsf{T}\mathbf{y}_i + w_0) \ge m$

Visual Computing: Joachim M. Buhmann — Machine Learning

204/225

Stationarity of Lagrangian

Extremality condition:

$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\alpha})}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i \le n} \alpha_i z_i \mathbf{y}_i = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i \le n} \alpha_i z_i \mathbf{y}_i$$
$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\alpha})}{\partial w_0} = -\sum_{i \le n} \alpha_i z_i = 0$$

Resubstituting $\frac{\partial L}{\partial \mathbf{w}} = 0, \frac{\partial L}{\partial w_0} = 0$ into the Lagrangian function $L(\mathbf{w}, w_0, \alpha)$

$$L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i \leq n} \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 \right]$$

$$= \frac{1}{2} \sum_{i \leq n} \sum_{j \leq n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j - \sum_{i \leq n} \sum_{j \leq n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + \sum_{i \leq n} \alpha_i$$

$$= \sum_{i \leq n} \alpha_i - \frac{1}{2} \sum_{i \leq n} \sum_{j \leq n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j \quad \text{(note the scalar product!)}$$

SVM Lagrangian

Minimize $||\mathbf{w}||$ for a given margin m = 1

 $\begin{array}{lll} \mbox{minimize} & \mathcal{T}(\mathbf{w}) &=& \frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{w} \\ \mbox{subject to} & z_i(\mathbf{w}^\mathsf{T}\mathbf{y}_i + w_0) &\geq& 1 \end{array}$

Generalized Lagrange Function:

$$L(\mathbf{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{n} \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 \right]$$

Functional and geometric margin: The problem formulation with margin m = 1 is called the *functional margin* setting; The original formulation refers to the *geometric margin*.

Visual Computing: Joachim M. Buhmann — Machine Learning

205/225

Dual Problem

The Dual Problem for support vector learning is

$$\begin{array}{ll} \text{maximize} & W(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} z_{j} \alpha_{i} \alpha_{j} \mathbf{y}_{i}^{\mathsf{T}} \mathbf{y}_{j} \\ \text{subject to} & \forall i \; \alpha_{i} \geq 0 \quad \wedge \quad \sum_{i=1}^{n} z_{i} \alpha_{i} = 0 \end{array}$$

The optimal hyperplane \mathbf{w}^*, w_0^* is given by

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y}_i, \quad w_0^* = -\frac{1}{2} \left(\min_{i:z_i=1} \mathbf{w}^{*\mathsf{T}} \mathbf{y}_i + \max_{i:z_i=-1} \mathbf{w}^{*\mathsf{T}} \mathbf{y}_i \right)$$

where α^* are the optimal Lagrange multipliers maximizing the Dual Problem.

Support Vectors

The Kuhn-Tucker Conditions for the maximal margin SVM are

$$\begin{aligned} \alpha_i^*(z_i g^*(\mathbf{y}_i) - 1) &= 0, & i = 1, \dots, n \\ \alpha_i^* &\geq 0, & i = 1, \dots, n \\ z_i g^*(\mathbf{y}_i) - 1 &\geq 0, & i = 1, \dots, n \end{aligned}$$

The first one is known as the **Kuhn-Tucker complementary condition**. The conditions imply

 $z_i g^*(\mathbf{y}_i) = 1 \implies \alpha_i^* \ge 0$ Support Vectors (SV) $z_i g^*(\mathbf{y}_i) \ne 1 \implies \alpha_i^* = 0$ Non Support Vectors

Visual Computing: Joachim M. Buhmann — Machine Learning

208/225

Soft Margin SVM

For each trainings vector $\mathbf{y}_i \in \mathcal{Y}$ a **slack variable** ξ_i is introduced to measure the violation of the margin constraint.

Find hyperplane that maximizes the margin $z_i g^*(\mathbf{y}_i) \ge m(1-\xi_i)$

Vectors \mathbf{y}_i with $z_i g^*(\mathbf{y}_i) = m(1-\xi_i)$ are called **support vectors**.

Optimal Decision Function

Sparsity:

$$g^{*}(\mathbf{y}) = \mathbf{w}^{*\mathsf{T}}\mathbf{y} + w_{0}^{*} = \sum_{i=1}^{n} z_{i}\alpha_{i}^{*}\mathbf{y}_{i}^{\mathsf{T}}\mathbf{y} + w_{0}^{*}$$
$$= \sum_{i \in \mathsf{SV}} z_{i}\alpha_{i}^{*}\mathbf{y}_{i}^{\mathsf{T}}\mathbf{y} + w_{0}^{*}$$

Remark: only few support vectors enter the sum to evaluate the decision function! \Rightarrow efficiency and interpretability

Optimal margin: $\mathbf{w}^{\mathsf{T}}\mathbf{w} = \sum_{i \in \mathsf{SV}} \alpha_i^*$

Visual Computing: Joachim M. Buhmann — Machine Learning

209/225

Learning the Soft Margin SVM

Slack variables are penalized by L_1 norm.

minimize
$$\mathcal{T}(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_i$$

subject to $z_i(\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) \geq 1 - \xi_i$
 $\xi_i \geq 0$

C controls the amount of constraint violations vs. margin maximization!

Lagrange function for soft margin SVM

$$L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^n \xi_i$$
$$- \sum_{i=1}^n \alpha_i \left[z_i (\mathbf{w}^{\mathsf{T}} \mathbf{y}_i + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \beta_i \xi_i$$

Visual Computing: Joachim M. Buhmann — Machine Learning

211/225

Stationarity of Primal Problem

Differentiation:

$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^n \alpha_i z_i \mathbf{y}_i = 0 \implies \mathbf{w} = \sum_{i=1}^n \alpha_i z_i \mathbf{y}_i$$
$$\frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \xi_i} = C - \alpha_i - \beta_i = 0 \quad \frac{\partial L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial b} = -\sum_{i=1}^n \alpha_i z_i = 0$$

Resubstituting into the Lagrangian function $L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$

$$\begin{split} L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) &= \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} + C \sum_{i=1}^n \xi_i \\ &- \sum_{i=1}^n \alpha_i \left[z_i (\mathbf{w}^\mathsf{T} \mathbf{y}_i + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \beta_i \xi_i \end{split}$$
Visual Computing: Joachim M. Buhmann — Machine Learning
$$\begin{aligned} & 212/225 \end{aligned}$$

Constaints of the Dual Problem

The dual objective function is the same as for the maximal margin SVM. The only difference is the constraint

$$C - \alpha_i - \beta_i = 0$$

Together with $\beta_i \ge 0$ it implies

 $\alpha_i \le C$

The Kuhn-Tucker complementary conditions

 $\alpha_i(z_i(\mathbf{w}^{\mathsf{T}}\mathbf{y}_i + w_0) - 1 + \xi_i) = 0, \quad i = 1, ..., n$ $\xi_i(\alpha_i - C) = 0, \quad i = 1, ..., n$

imply that nonzero slack variables can only occur when $\alpha_i = C$.

$$L(\mathbf{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + \sum_{i=1}^{n} \alpha_i (1 - \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j + \sum_{i=1}^{n} (\underline{C - \alpha_i - \beta_i}) \xi_i = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y}_i^{\mathsf{T}} \mathbf{y}_j$$

Dual Problem of Soft Margin SVM

The Dual Problem for support vector learning is

 $\begin{array}{ll} \text{maximize} & W(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} z_{j} \alpha_{i} \alpha_{j} \mathbf{y}_{i}^{\mathsf{T}} \mathbf{y}_{j} \\ \text{subject to} & \sum_{j=1}^{n} z_{j} \alpha_{j} = 0 \ \land \ \forall i \ C \ \geq \alpha_{i} \geq 0 \end{array}$

The optimal hyperplane \mathbf{w}^* is given by

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y}_i$$

where α^* are the optimal Lagrange multipliers maximizing the Dual Problem.

Only for support vectors it holds $\alpha_i^* > 0$

Non–Linear SVMs

Feature extraction by non linear transformation $\mathbf{y} = \phi(\mathbf{x})$

Problem:

 $\mathbf{y}_i^\mathsf{T} \mathbf{y}_j = \phi^\mathsf{T}(\mathbf{x}_i)\phi(\mathbf{x}_j)$

is the inner product in a high dimensional space.

A kernel function is defined by

$$\forall \mathbf{x}, \mathbf{z} \in \Omega : \quad K(\mathbf{x}, \mathbf{z}) = \phi^{\mathsf{T}}(\mathbf{x})\phi(\mathbf{z})$$

Using the kernel function the discriminant function becomes

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i z_i K(\mathbf{x}_i, \mathbf{x})$$

Linear Programming Support Vector Machines

Idea: Minimize an estimate of the number of positive multipliers $\sum_{i=1}^{n} \alpha_i$ which improves bounds on the generalization error.

The Lagrangian for the LP-SVM is

 $\begin{array}{ll} \text{minimize} & W(\boldsymbol{\alpha}, \boldsymbol{\xi}) = \sum_{i=1}^{n} \alpha_i + C \sum_{i=1}^{n} \xi_i \\ \text{subject to} & z_i \left[\sum_{j=1}^{n} \alpha_j \mathbf{y}_i^\mathsf{T} \mathbf{y}_j + w_0 \right] \geq 1 - \xi_i, \\ & \alpha_i \geq 0, \, \xi_i \geq 0, \, 1 \leq i \leq n \end{array}$

Advantage: efficient LP solver can be used.

Disadvantage: theory is not as well understood as for standard SVMs.

Visual Computing: Joachim M. Buhmann — Machine Learning

217/225

Characterization of Kernels

For a symmetric matrix $K(\mathbf{x}_i, \mathbf{x}_j)|_{i,j=1}^n$ (Gram matrix) there exists an EV decomposition

$$K = V \Lambda V^{\mathsf{T}}$$

V: orthogonal matrix of eigenvectors $(v_{ti})|_{i=1}^{n}$ Λ : diagonal matrix of eigenvalues λ_t

Assume all eigenvalues are nonnegative and consider mapping

$$\phi: \mathbf{x}_i \to \left(\sqrt{\lambda_t} v_{ti}\right)_{t=1}^n \in \mathbb{R}^n, i = 1, \dots, n$$

Then it follows

$$\phi^{\mathsf{T}}(\mathbf{x}_i)\phi(\mathbf{x}_j) = \sum_{t=1}^n \lambda_t v_{ti} v_{tj} = \left(V\Lambda V^{\mathsf{T}}\right)_{ij} = K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$$

Visual Computing: Joachim M. Buhmann — Machine Learning

Visual Computing: Joachim M. Buhmann — Machine Learning

218/225

Positivity of Kernels

Theorem: Let Ω be a finite input space with $K(\mathbf{x}, \mathbf{z})$ a symmetric function on Ω . Then $K(\mathbf{x}, \mathbf{z})$ is a kernel function if and only if the matrix

$$K = \left(K(\mathbf{x}_i, \mathbf{x}_j)\right)_{i,j=1}^n$$

is positive semi-definite (has only non-negative eigenvalues).

Extension to infinite dimensional Hilbert Spaces:

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \sum_{i=1}^{\infty} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{z})$$

Visual Computing: Joachim M. Buhmann — Machine Learning

220/225

Possible Kernels

Remark: Each kernel function, that hold Mercer's conditions describes an inner product in a high dimensional space. The kernel function replaces the inner product.

Possible Kernels:

a)
$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{||\mathbf{x} - \mathbf{z}||^2}{2\sigma^2}\right)$$
 (RBF Kernel)

b)
$$K(\mathbf{x}, \mathbf{z}) = \tanh \kappa \mathbf{x} \mathbf{z} - b$$
 (Sigmoid Kernel)

c)
$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}\mathbf{z})^d$$
 (Polynomial Kernel)
 $K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}\mathbf{z} + 1)^d$

d) $K(\mathbf{x}, \mathbf{z})$: string kernels for sequences

Mercer's Theorem

Theorem (Mercer): Let Ω be a compact subset of \mathbb{R}^n . Suppose *K* is a continuous symmetric function such that the integral operator $T_k : L_2(X) \to L_2(X)$,

$$(T_k f)(\cdot) = \int_{\Omega} K(\cdot, \mathbf{x}) f(\mathbf{x}) d\mathbf{x},$$

is positive, that is

$$\sum_{\Omega \times \Omega} K(\mathbf{x}, \mathbf{z}) f(\mathbf{x}) f(\mathbf{z}) d\mathbf{x} d\mathbf{z} > 0 \quad \forall f \in L_2(\Omega)$$

Then we can expand $K(\mathbf{x}, \mathbf{z})$ in a uniformly convergent series in terms of T_k 's eigen-functions $\phi_j \in L_2(\Omega)$, with $||\phi_j||_{L_2} = 1$ and $\lambda_j > 0$.

Visual Computing: Joachim M. Buhmann — Machine Learning

221/225

Kernel Engineering

Kernel composition rules: Let K_1, K_2 be kernels over $\Omega \times \Omega, \Omega \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^+, f(.)$ a real-vealued function $\phi : \Omega \to \mathbb{R}^e$ with K_3 a kernel over $\mathbb{R}^e \times \mathbb{R}^e$.

Then the following functions are kernels:

1.
$$K(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z}) + K_2(\mathbf{x}, \mathbf{z}),$$

2. $K(\mathbf{x}, \mathbf{z}) = aK_1(\mathbf{x}, \mathbf{z}),$
3. $K(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z})K_2(\mathbf{x}, \mathbf{z}),$
4. $K(\mathbf{x}, \mathbf{z}) = f(\mathbf{x})f(\mathbf{z}),$
5. $K(\mathbf{x}, \mathbf{z}) = K_3(\phi(\mathbf{x}), \phi(\mathbf{z})),$
6. $K(\mathbf{x}, \mathbf{z}) = p(K_1(\mathbf{x}, \mathbf{z})), (p(x) \text{ is a polynomial with positive co-efficients})}$
7. $K(\mathbf{x}, \mathbf{z}) = \exp(K_1(\mathbf{x}, \mathbf{z})),$

Oursendz Oursendz Ourse	Office Office Image: Contract of the second seco	Ein- und Ausgaberfenster	EMILO
Image: Sector	Image: Section of the section of th		Datensatz Coljekt
State	Port Image: State S		Cofficence Coffic
$\left \begin{array}{c} \left $	(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b		SVM Start Harrot, (1994) Basis Basis
Image: Second	Image: Second		
Harden Die die Klassefikation durch klosen auf "Bare"	Etern Die die Klassifikation durch kölchen auf Staat"		Image: Constraint of the state of
Kassifikation beendet	Kaushikon berndet		Uterten Die die Klasselfkatten durch Klosen auf Start.
			Klassifiation brendet

Example: Hand Written Digit Recognition

7291 training images und 2007 test images (16x16 pixel, 256 gray values)

٥	I		2	з	4	5	6	7	8	9	
ð	ł	,	a	3	4	5	6	7	s	9	
ø	J		2	3	4	2	6	2	8	9	
		Cla hur per sup	issifi nan cept oport	cation classi ron vecto	i meth ificatio or ma	nod on chines	tes 2.7 5.9 4.0	ot erro ' %) %) %	<u>r</u>		
Visual Computing: Joachim M. Buhmann — Machine Learning										225/2	225