Machine Learning: Topic Chart

- Core problems of pattern recognition
- Bayesian decision theory
- Perceptrons and support vector machines
- Data clustering
- Dimension reduction

Linear Classification

Generalized Linear Discriminant Functions

Linear Discriminant Functions can be written as

$$
g(x)=w_{0}+\sum_{1 \leq i \leq d} w_{i} x_{i}=\left(w_{0}, w\right)(1, x)^{T}=: a^{T} y .
$$

with generalized coordinates $y=(1, x)^{T}, a=\left(w_{0}, w\right)^{T}$.
Note that the generalized separating hyperplanes contain the origin of the y-space!

Quadratic Discriminant Functions have the form

$$
g(x)=w_{0}+\sum_{i \leq d} w_{i} x_{i}+\sum_{i \leq d} \sum_{j \leq d} w_{i j} x_{i} x_{j} .
$$

The quadratic map $y=\left(1, x, x^{2}\right)^{T}$ transforms a line in a parabola in three dimensions. A planar split in y-space corresponds to a partitioning in x space which is not simply connected.

Linear Separable Two Class Case

Linear Separability:

$$
\exists\left(w_{0}, w\right)^{T} \text { with } \begin{cases}w^{T} x_{i}+w_{0}>0 & \text { for } y_{i}=1 \\ w^{T} x_{i}+w_{0}<0 & \text { for } y_{i}=2\end{cases}
$$

Problem: The solution vector is not unique!

The Margin Idea in the Linear Separable Two Class Case

Idea: Introduce a margin m to classify data with a "safe distance" from the decision boundary, i.e., $z_{i}\left(w^{T} x_{i}+w_{0}\right) \geq m>0$.

Regularization classifier!

The Perceptron Criterion

$$
\text { (in generalized coordinates } y=(1, x)^{T}, a=\left(w_{0}, w\right)^{T} \text {) }
$$

Problem: Solve the inequalities $a^{T} y_{i}>0, \forall i$
Criterion Functions: $J\left(a ; y_{1}, \ldots, y_{n}\right)=\ldots$

- ... number of misclassified samples: poor choice since J is piecewise constant! No gradient!
- ... sum of violating projections.

Perceptron Criterion:

$$
J_{p}(a)=\sum_{y \in \mathcal{Y}}\left(-a^{T} y\right)
$$

\mathcal{Y} is the set of misclassified samples.
Perceptron Rule: $\quad \Rightarrow a(k+1)=a(k)+\eta(k) \sum_{y \in \mathcal{Y}} y$

Perceptron Algorithm (Batch Version)

Require: initialize $a, \theta, \eta(\cdot)$
1: $k \longleftarrow 0$
2: repeat
3: $\quad a \leftarrow a+\sum_{y \in \mathcal{Y}} \eta(k) y$
4: $\quad k \leftarrow k+1$
5: until $\left|\eta(k) \sum_{y \in \mathcal{Y}} y\right|<\theta$

Fixed-Increment Single Sample Perceptron
Require: initialize $a, k \leftarrow 0$
1: repeat

2: $\quad k \leftarrow(k+1) \bmod n$
3: if y^{k} is misclassified by a then
4: $\quad a \leftarrow a+y^{k}$
5: end if
6: until all patterns are correctly classified

Perzeptron

Bedienungshinweise

Klicken Sie auf 'Weiter' um mit der schrittweisen Klassifikation fortzufahren

Perceptron Convergence

Theorem: If the training samples are linearly separable, then the sequence of weight vectors $a \leftarrow a+y^{k}$ will terminate at a solution vector.

Proof: Let \hat{a} be a solution vector, i.e., $\hat{a}^{T} y_{i}>0, \forall i$ and let $\alpha>0$ be a scaling factor. Then it holds:

$$
\begin{aligned}
a(k+1)-\alpha \hat{a} & =a(k)-\alpha \hat{a}+y^{k} \\
\Rightarrow\|a(k+1)-\alpha \hat{a}\|^{2} & =\|a(k)-\alpha \hat{a}\|^{2}+2(a(k)-\alpha \hat{a})^{T} y^{k}+\left\|y^{k}\right\|^{2}
\end{aligned}
$$

Since y^{k} was misclassified the inequality $a^{T}(k) y^{k} \leq 0$ holds.

$$
\Rightarrow\|a(k+1)-\alpha \hat{a}\|^{2} \leq\|a(k)-\alpha \hat{a}\|^{2}-2 \underbrace{\hat{a}^{T} y^{k}}_{>0}+\left\|y^{k}\right\|^{2}
$$

$\hat{a}^{T} y^{k}$ dominates $\left\|y^{k}\right\|^{2}$ for sufficiently large α.

Defs.: $\beta^{2}:=\max _{i}\left\|y_{i}\right\|^{2}, \gamma:=\min _{i}\left(\hat{a}^{T} y^{i}\right)>0$

$$
\begin{aligned}
\Rightarrow\|a(k+1)-\alpha \hat{a}\|^{2} & \leq\|a(k)-\alpha \hat{a}\|^{2}-2 \alpha \gamma+\beta^{2} \\
& =\|a(k)-\alpha \hat{a}\|^{2}-\beta^{2} \text { for } \alpha=\beta^{2} / \gamma
\end{aligned}
$$

The algorithm converges since $\|a(k+1)-\alpha \hat{a}\|^{2}$ decreases at least by the constant β^{2} and every error will be corrected.

Bound on the Number of Update Steps:

$$
\begin{aligned}
\|a(k+1)-\alpha \hat{a}\|^{2} & \leq\|a(1)-\alpha \hat{a}\|^{2}-k \beta^{2}=0 \\
\Rightarrow k_{0} & =\frac{\|a(1)-\alpha \hat{a}\|^{2}}{\beta^{2}}
\end{aligned}
$$

Choose $a(1)=0 \quad \Rightarrow k_{0}=\frac{\alpha^{2}\|\hat{a}\|^{2}}{\beta^{2}}=\frac{\beta^{2}\|\hat{a}\|^{2}}{\gamma^{2}}=\frac{\max _{i}\left\|y_{i}\right\|^{2}\|\hat{a}\|^{2}}{\min _{i}\left(\hat{a}^{T} y^{i}\right)^{2}}$

Remark: Examples orthogonal to the solution vector are difficult to learn!

Limitations of Single-Layer Perceptrons

(Minsky \& Pappert 1969)

Theorem: A size limited perceptron cannot decide in all cases if parts of a figure are connected or separate.

Proof: The problem is reduced to the XOR problem which is not linearly separable.
ϕ_{1}, ϕ_{2} are detectors which recognize vertical bars in the upper left and right corner.

Truth Table for the connectivity problem.

Simple (single layer) perceptrons can be trained efficiently since classification errors can be "blamed" to components of the weight vector a in a direct way. Credit Assignment!

Support Vector Machine (SVM)

Extending the perceptron idea: use a linear classifier with margin and a non-linear feature transformation.

Nonlinear Transformation in Kernel Space

Lagrangian Optimization Theory

Optimization under constraints (Primal Problem):
Given an optimization problem with domain $\Omega \subseteq \mathbb{R}^{d}$,

$$
\begin{array}{rll}
\operatorname{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega \\
\text { subject to } & g_{i}(\mathbf{w}) \leq 0, & i=1, \ldots, k \\
& h_{i}(\mathbf{w})=0, & i=1, \ldots, m
\end{array}
$$

The generalized Lagrangian function is defined as

$$
L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w})+\sum_{i=1}^{m} \beta_{i} h_{i}(\mathbf{w})
$$

Kuhn-Tucker Conditions (1951)

Theorem: Given an optimization problem with convex domain $\Omega \subseteq \mathbb{R}^{d}$,

$$
\begin{array}{rll}
\operatorname{minimize} & f(\mathbf{w}), & \mathbf{w} \in \Omega \\
\text { subject to } & g_{i}(\mathbf{w}) \leq 0, \quad i=1, \ldots, k \\
& h_{i}(\mathbf{w})=0, \quad i=1, \ldots, m
\end{array}
$$

with $f \in C^{1}$ convex and g_{i}, h_{i} affine, necessary and sufficient conditions for a normal point \mathbf{w}^{*} to be an optimum are the existence of $\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}$ such that

$$
\begin{gathered}
\frac{\partial L\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)}{\partial \mathbf{w}}=0 \quad \frac{\partial L\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)}{\partial \boldsymbol{\beta}}=0 \\
\alpha_{i}^{*} g_{i}\left(\mathbf{w}^{*}\right)=0, \quad g_{i}\left(\mathbf{w}^{*}\right) \leq 0, \quad \alpha_{i}^{*} \geq 0, \quad i=1, \ldots, k
\end{gathered}
$$

Support Vector Machines (SVM)

Idea: linear classifier with margin and feature transformation.
Transformation from original feature space to nonlinear feature space.

$$
\begin{aligned}
& \mathbf{y}_{i}=\phi\left(\mathbf{x}_{i}\right) \quad \text { e.g. Polynomial, Radial Basis Function, ... } \\
& \phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{e} \text { with } d \ll e \\
& z_{i}=\left\{\begin{array} { l }
{ + 1 } \\
{ - 1 }
\end{array} \text { if } \mathbf { x } _ { i } \text { in class } \left\{\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right.\right.
\end{aligned}
$$

Training vectors should be linearly separable after mapping! Linear discriminant function:

$$
g(\mathbf{y})=\mathbf{w}^{\top} \mathbf{y}+w_{0}
$$

Support Vector Machine (SVM)

Find hyperplane that maximizes the margin m with

$$
z_{i} g\left(\mathbf{y}_{i}\right)=z_{i}\left(\mathbf{w}^{\top} \mathbf{y}+w_{0}\right) \geq m \quad \text { for all } \mathbf{y}_{i} \in \mathcal{Y}
$$

Vectors \mathbf{y}_{i} with $z_{i} g\left(\mathbf{y}_{i}\right)=m$ are the support vectors.

Maximal Margin Classifier

Invariance: assume that the weight vector w is normalized $(\|\mathbf{w}\|=1)$ since a rescaling $\left(\mathbf{w}, w_{0}\right) \leftarrow\left(\lambda \mathbf{w}, \lambda w_{0}\right), m \leftarrow \lambda m$ does not change the problem.

Condition: $\quad z_{i}=\left\{\begin{array}{ll}+1 & \mathbf{w}^{\top} \mathbf{y}_{i}+w_{0} \geq m \\ -1 & \mathbf{w}^{\top} \mathbf{y}_{i}+w_{0} \leq-m\end{array} \quad \forall i\right.$
Objective: maximize margin m s.t. joint condition $z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right) \geq m$ is met.

Learning problem: Find \mathbf{w} with $\|\mathrm{w}\|=1$, such that the margin m is maximized.

$$
\begin{array}{ll}
\operatorname{maximize} & m \\
\text { subject to } & \forall \mathbf{y}_{i} \in \mathcal{Y}: z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right) \geq m
\end{array}
$$

SVM Learning

What is the margin m ?
Consider two points $\mathrm{y}^{+}, \mathbf{y}^{-}$ of class 1,2 which are located on both sides of the margin boundaries.

Transformation of objective:

rescaling $\mathbf{w} \leftarrow \frac{\mathbf{w}}{m}, w_{0} \leftarrow \frac{w_{0}}{m} \Rightarrow$ yields the constraints
$z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right) \geq 1$

Margin:

$m=\frac{1}{2\|\mathbf{w}\|}\left(\mathbf{w}^{\top} \mathbf{y}^{+}-\mathbf{w}^{\top} \mathbf{y}^{-}\right)=\frac{1}{\|\mathbf{w}\|}$

$m=\frac{1}{\|\mathbf{w}\|}$ follows from inserting $\pm\left(\mathbf{w}^{\top} \mathbf{y}^{ \pm}+w_{0}\right)=1$
\Rightarrow maximizing the margin corresponds to minimizing the norm \|w\| for margin $m=1$.

SVM Lagrangian

Minimize $|\mid \mathbf{w} \|$ for a given margin $m=1$

$$
\begin{aligned}
\operatorname{Tinimize} & =\frac{1}{2} \mathbf{w}^{\top} \mathbf{w} \\
\text { subject to } & z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right)
\end{aligned}
$$

Generalized Lagrange Function:

$$
L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)=\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{i=1}^{n} \alpha_{i}\left[z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right)-1\right]
$$

Functional and geometric margin: The problem formulation with margin $m=1$ is called the functional margin setting; The original formulation refers to the geometric margin.

Stationarity of Lagrangian

Extremality condition:

$$
\begin{aligned}
& \frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i \leq n} \alpha_{i} z_{i} \mathbf{y}_{i}=0 \quad \Rightarrow \quad \mathbf{w}=\sum_{i \leq n} \alpha_{i} z_{i} \mathbf{y}_{i} \\
& \frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)}{\partial w_{0}}=-\sum_{i \leq n} \alpha_{i} z_{i}=0
\end{aligned}
$$

Resubstituting $\frac{\partial L}{\partial \mathbf{w}}=0, \frac{\partial L}{\partial w_{0}}=0$ into the Lagrangian function $L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)$

$$
\begin{aligned}
L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right) & =\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{i \leq n} \alpha_{i}\left[z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right)-1\right] \\
& =\frac{1}{2} \sum_{i \leq n} \sum_{j \leq n} \alpha_{i} \alpha_{j} z_{i} z_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j}-\sum_{i \leq n} \sum_{j \leq n} \alpha_{i} \alpha_{j} z_{i} z_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j}+\sum_{i \leq n} \alpha_{i} \\
& =\sum_{i \leq n} \alpha_{i}-\frac{1}{2} \sum_{i \leq n} \sum_{j \leq n} \alpha_{i} \alpha_{j} z_{i} z_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j} \quad \text { (note the scalar product!) }
\end{aligned}
$$

Dual Problem

The Dual Problem for support vector learning is
maximize $W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} z_{j} \alpha_{i} \alpha_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j}$
subject to $\forall i \alpha_{i} \geq 0 \quad \wedge \quad \sum_{i=1}^{n} z_{i} \alpha_{i}=0$
The optimal hyperplane $\mathbf{w}^{*}, w_{0}^{*}$ is given by

$$
\mathbf{w}^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} z_{i} \mathbf{y}_{i}, \quad w_{0}^{*}=-\frac{1}{2}\left(\min _{i: z_{i}=1} \mathbf{w}^{* \mathrm{~T}} \mathbf{y}_{i}+\max _{i: z_{i}=-1} \mathbf{w}^{* \mathrm{~T}} \mathbf{y}_{i}\right)
$$

where $\boldsymbol{\alpha}^{*}$ are the optimal Lagrange multipliers maximizing the Dual Problem.

Support Vectors

The Kuhn-Tucker Conditions for the maximal margin SVM are

$$
\begin{aligned}
\alpha_{i}^{*}\left(z_{i} g^{*}\left(\mathbf{y}_{i}\right)-1\right) & =0, & & i=1, \ldots, n \\
\alpha_{i}^{*} & \geq 0, & & i=1, \ldots, n \\
z_{i} g^{*}\left(\mathbf{y}_{i}\right)-1 & \geq 0, & & i=1, \ldots, n
\end{aligned}
$$

The first one is known as the Kuhn-Tucker complementary condition. The conditions imply

$$
\begin{array}{lll}
z_{i} g^{*}\left(\mathbf{y}_{i}\right)=1 & \Rightarrow \alpha_{i}^{*} \geq 0 & \text { Support Vectors (SV) } \\
z_{i} g^{*}\left(\mathbf{y}_{i}\right) \neq 1 \quad \Rightarrow \quad \alpha_{i}^{*}=0 & \text { Non Support Vectors }
\end{array}
$$

Optimal Decision Function

Sparsity:

$$
\begin{aligned}
g^{*}(\mathbf{y}) & =\mathbf{w}^{* \top} \mathbf{y}+w_{0}^{*}=\sum_{i=1}^{n} z_{i} \alpha_{i}^{*} \mathbf{y}_{i}^{\top} \mathbf{y}+w_{0}^{*} \\
& =\sum_{i \in \mathrm{SV}} z_{i} \alpha_{i}^{*} \mathbf{y}_{i}^{\top} \mathbf{y}+w_{0}^{*}
\end{aligned}
$$

Remark: only few support vectors enter the sum to evaluate the decision function! \Rightarrow efficiency and interpretability

Optimal margin: $\quad \mathbf{w}^{\top} \mathbf{w}=\sum_{i \in \mathrm{SV}} \alpha_{i}^{*}$

Soft Margin SVM

For each trainings vector $\mathbf{y}_{i} \in \mathcal{Y}$ a slack variable ξ_{i} is introduced to measure the violation of the margin constraint.

Find hyperplane that maximizes the margin $z_{i} g^{*}\left(\mathbf{y}_{i}\right) \geq m\left(1-\xi_{i}\right)$

Vectors \mathbf{y}_{i} with $z_{i} g^{*}\left(\mathbf{y}_{i}\right)=m\left(1-\xi_{i}\right)$ are called support vectors.

Learning the Soft Margin SVM

Slack variables are penalized by L_{1} norm.
minimize $\quad \mathcal{T}(\mathbf{w}, \boldsymbol{\xi})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i}$
subject to $z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right) \geq 1-\xi_{i}$

$$
\xi_{i} \geq 0
$$

C controls the amount of constraint violations vs. margin maximization!
Lagrange function for soft margin SVM

$$
\begin{aligned}
L\left(\mathbf{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) & =\frac{1}{2} \mathbf{w}^{\boldsymbol{\top}} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i} \\
& -\sum_{i=1}^{n} \alpha_{i}\left[z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right)-1+\xi_{i}\right]-\sum_{i=1}^{n} \beta_{i} \xi_{i}
\end{aligned}
$$

Stationarity of Primal Problem

Differentiation:

$$
\begin{aligned}
& \frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} z_{i} \mathbf{y}_{i}=0 \quad \Rightarrow \quad \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} z_{i} \mathbf{y}_{i} \\
& \frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)}{\partial \xi_{i}}=C-\alpha_{i}-\beta_{i}=0 \quad \frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)}{\partial b}=-\sum_{i=1}^{n} \alpha_{i} z_{i}=0
\end{aligned}
$$

Resubstituting into the Lagrangian function $L\left(\mathbf{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)$

$$
\begin{aligned}
L\left(\mathbf{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) & =\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i} \\
& -\sum_{i=1}^{n} \alpha_{i}\left[z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right)-1+\xi_{i}\right]-\sum_{i=1}^{n} \beta_{i} \xi_{i}
\end{aligned}
$$

$$
\begin{aligned}
L\left(\mathbf{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)= & \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} \mathbf{y}_{\mathbf{y}}^{\top} \mathbf{y}_{j}+C \sum_{i=1}^{n} \xi_{i} \\
& -\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} \mathbf{y}_{j}^{\top} \mathbf{y}_{j} \\
& +\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i} \xi_{i} \\
= & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j} \\
& +\sum_{i=1}^{n} \underbrace{\left.C-\beta_{i}\right) \xi_{i}}_{=\frac{\partial L}{}\left(\frac{\sigma_{i}}{\partial_{i}}=0\right.} \\
= & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} z_{i} z_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j}
\end{aligned}
$$

Constaints of the Dual Problem

The dual objective function is the same as for the maximal margin SVM. The only difference is the constraint

$$
C-\alpha_{i}-\beta_{i}=0
$$

Together with $\beta_{i} \geq 0$ it implies

$$
\alpha_{i} \leq C
$$

The Kuhn-Tucker complementary conditions

$$
\begin{aligned}
\alpha_{i}\left(z_{i}\left(\mathbf{w}^{\top} \mathbf{y}_{i}+w_{0}\right)-1+\xi_{i}\right) & =0, & & i=1, \ldots, n \\
\xi_{i}\left(\alpha_{i}-C\right) & =0, & & i=1, \ldots, n
\end{aligned}
$$

imply that nonzero slack variables can only occur when $\alpha_{i}=C$.

Dual Problem of Soft Margin SVM

The Dual Problem for support vector learning is

$$
\begin{array}{cl}
\operatorname{maximize} & W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} z_{j} \alpha_{i} \alpha_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j} \\
\text { subject to } & \sum_{j=1}^{n} z_{j} \alpha_{j}=0 \wedge \forall i C \geq \alpha_{i} \geq 0
\end{array}
$$

The optimal hyperplane w^{*} is given by

$$
\mathbf{w}^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} z_{i} \mathbf{y}_{i}
$$

where α^{*} are the optimal Lagrange multipliers maximizing the Dual Problem.

Only for support vectors it holds $\alpha_{i}^{*}>0$

Applet HTML Page

Klassifikation beendet

Linear Programming Support Vector Machines

Idea: Minimize an estimate of the number of positive multipliers $\sum_{i=1}^{n} \alpha_{i}$ which improves bounds on the generalization error.

The Lagrangian for the LP-SVM is

$$
\begin{aligned}
\operatorname{minimize} & W(\boldsymbol{\alpha}, \xi)=\sum_{i=1}^{n} \alpha_{i}+C \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & z_{i}\left[\sum_{j=1}^{n} \alpha_{j} \mathbf{y}_{i}^{\top} \mathbf{y}_{j}+w_{0}\right] \geq 1-\xi_{i} \\
& \alpha_{i} \geq 0, \xi_{i} \geq 0,1 \leq i \leq n
\end{aligned}
$$

Advantage: efficient LP solver can be used.
Disadvantage: theory is not as well understood as for standard SVMs.

Non-Linear SVMs

Feature extraction by non linear transformation $\mathbf{y}=\phi(\mathbf{x})$
Problem:

$$
\mathbf{y}_{i}^{\top} \mathbf{y}_{j}=\phi^{\top}\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{j}\right)
$$

is the inner product in a high dimensional space.
A kernel function is defined by

$$
\forall \mathbf{x}, \mathbf{z} \in \Omega: \quad K(\mathbf{x}, \mathbf{z})=\phi^{\top}(\mathbf{x}) \phi(\mathbf{z})
$$

Using the kernel function the discriminant function becomes

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} z_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Characterization of Kernels

For a symmetric matrix $\left.K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)_{i, j=1}^{n}$ (Gram matrix) there exists an EV decomposition

$$
K=V \Lambda V^{\top}
$$

V : orthogonal matrix of eigenvectors $\left.\left(v_{t i}\right)\right|_{i=1} ^{n}$
Λ : diagonal matrix of eigenvalues λ_{t}
Assume all eigenvalues are nonnegative and consider mapping

$$
\phi: \mathbf{x}_{i} \rightarrow\left(\sqrt{\lambda_{t}} v_{t i}\right)_{t=1}^{n} \in \mathbb{R}^{n}, i=1, \ldots, n
$$

Then it follows

$$
\phi^{\top}\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{j}\right)=\sum_{t=1}^{n} \lambda_{t} v_{t i} v_{t j}=\left(V \Lambda V^{\top}\right)_{i j}=K_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

Positivity of Kernels

Theorem: Let Ω be a finite input space with $K(\mathbf{x}, \mathbf{z})$ a symmetric function on Ω. Then $K(\mathbf{x}, \mathbf{z})$ is a kernel function if and only if the matrix

$$
K=\left(K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)_{i, j=1}^{n}
$$

is positive semi-definite (has only non-negative eigenvalues).
Extension to infinite dimensional Hilbert Spaces:

$$
<\phi(\mathbf{x}), \phi(\mathbf{z})>=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(\mathbf{x}) \phi_{i}(\mathbf{z})
$$

Mercer's Theorem

Theorem (Mercer): Let Ω be a compact subset of \mathbb{R}^{n}. Suppose K is a continous symmetric function such that the integral operator $T_{k}: L_{2}(X) \rightarrow L_{2}(X)$,

$$
\left(T_{k} f\right)(\cdot)=\int_{\Omega} K(\cdot, \mathbf{x}) f(\mathbf{x}) d \mathbf{x},
$$

is positive, that is

$$
\int_{\Omega \times \Omega} K(\mathbf{x}, \mathbf{z}) f(\mathbf{x}) f(\mathbf{z}) d \mathbf{x} d \mathbf{z}>0 \quad \forall f \in L_{2}(\Omega)
$$

Then we can expand $K(\mathbf{x}, \mathbf{z})$ in a uniformly convergent series in terms of T_{k} 's eigen-functions $\phi_{j} \in L_{2}(\Omega)$, with $\left\|\phi_{j}\right\|_{L_{2}}=1$ and $\lambda_{j}>0$.

Possible Kernels

Remark: Each kernel function, that hold Mercer's conditions describes an inner product in a high dimensional space. The kernel function replaces the inner product.

Possible Kernels:

a) $K(\mathbf{x}, \mathbf{z})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{z}\|^{2}}{2 \sigma^{2}}\right) \quad$ (RBF Kernel)
b) $K(\mathbf{x}, \mathbf{z})=\tanh k \mathbf{x z}-b \quad$ (Sigmoid Kernel)
c) $K(\mathbf{x}, \mathbf{z})=(\mathbf{x z})^{d} \quad$ (Polynomial Kernel) $K(\mathbf{x}, \mathbf{z})=(\mathbf{x z}+1)^{d}$
d) $K(\mathbf{x}, \mathbf{z})$: string kernels for sequences

Kernel Engineering

Kernel composition rules: Let K_{1}, K_{2} be kernels over $\Omega \times$ $\Omega, \Omega \subseteq \mathbb{R}^{d}, a \in \mathbb{R}^{+}, f($.$) a real-vealued function \phi: \Omega \rightarrow \mathbb{R}^{e}$ with K_{3} a kernel over $\mathbb{R}^{e} \times \mathbb{R}^{e}$.

Then the following functions are kernels:

1. $K(\mathbf{x}, \mathbf{z})=K_{1}(\mathbf{x}, \mathbf{z})+K_{2}(\mathbf{x}, \mathbf{z})$,
2. $K(\mathbf{x}, \mathbf{z})=a K_{1}(\mathbf{x}, \mathbf{z})$,
3. $K(\mathbf{x}, \mathbf{z})=K_{1}(\mathbf{x}, \mathbf{z}) K_{2}(\mathbf{x}, \mathbf{z})$,
4. $K(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) f(\mathbf{z})$,
5. $K(\mathbf{x}, \mathbf{z})=K_{3}(\phi(\mathbf{x}), \phi(\mathbf{z}))$,
6. $K(\mathbf{x}, \mathbf{z})=p\left(K_{1}(\mathbf{x}, \mathbf{z})\right),(p(x)$ is a polynomial with positive coefficients)
7. $K(\mathbf{x}, \mathbf{z})=\exp \left(K_{1}(\mathbf{x}, \mathbf{z})\right)$,

Applet HTML Page

Fügen Sie im Eingabefenster neue Objekte zum Datensatz hinzu.

Starten Sie die Klassifikation durch Klicken auf 'Start'.

Klassifikation beendet

Example: Hand Written Digit Recognition

- 7291 training images und 2007 test images (16x16 pixel, 256 gray values)

Classification method	test error
human classification	2.7%
perceptron	5.9%
support vector machines	4.0%

