
Machine Learning: Topic Chart

• Core problems of pattern recognition

• Bayesian decision theory

• Perceptrons and support vector machines

• Data clustering

• Dimension reduction
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Linear Classification
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Generalized Linear Discriminant Functions

Linear Discriminant Functions can be written as

g(x) = w0 +
∑

1≤i≤d

wixi = (w0, w)(1, x)T =: aTy .

with generalized coordinates y = (1, x)T , a = (w0, w)T .
Note that the generalized separating hyperplanes contain the origin of

the y-space!

Quadratic Discriminant Functions have the form

g(x) = w0 +
∑
i≤d

wixi +
∑
i≤d

∑
j≤d

wijxixj .
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FIGURE 5.5. The mapping y = (1, x, x2)t takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y-space into regions corresponding to
two categories, and this in turn gives a nonsimply connected decision region in the
one-dimensional x-space. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 5.6. The two-dimensional input space x is mapped through a polynomial func-
tion f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear discriminant
in this transformed space is a hyperplane, which cuts the surface. Points to the positive

side of the hyperplane Ĥ correspond to category ω1, and those beneath it correspond to
category ω2. Here, in terms of the x space, R1 is a not simply connected. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

The quadratic map y = (1, x, x2)T transforms a line in a parabola in three

dimensions. A planar split in y-space corresponds to a partitioning in x-

space which is not simply connected.
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Linear Separable Two Class Case

Linear Separability:

∃(w0, w)T with

{
wTxi + w0 > 0 for yi = 1

wTxi + w0 < 0 for yi = 2

solution region

w

separating plane

solution region

w

separating plane

separating plane

solution region

w

Problem: The solution vector is not unique!
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The Margin Idea in the Linear Separable Two
Class Case

Idea: Introduce a
margin m to classi-
fy data with a “safe
distance” from the
decision boundary, i.e.,
zi(wTxi + w0) ≥ m > 0.

Regularization of
classifier!

solution region

w
x2

x1
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The Perceptron Criterion
(in generalized coordinates y = (1, x)T , a = (w0, w)T )

Problem: Solve the inequalities aTyi > 0,∀i

Criterion Functions: J(a; y1, . . . , yn) = . . .

• . . . number of misclassified samples: poor choice since J

is piecewise constant! No gradient!
• . . . sum of violating projections.

Perceptron Criterion: Jp(a) =
∑
y∈Y

(−aTy)

Y is the set of misclassified samples.

Perceptron Rule: ⇒ a(k + 1) = a(k) + η(k)
∑

y∈Y y
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Perceptron Algorithm (Batch Version)
Require: initialize a, θ, η(·)

1: k ← 0
2: repeat
3: a← a +

∑
y∈Y η(k)y

4: k ← k + 1
5: until |η(k)

∑
y∈Y y| < θ
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FIGURE 5.12. The Perceptron criterion, Jp(a), is plotted as a function of the weights a1

and a2 for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2, y3, y1, y3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by y3)
takes the candidate vector farther from the solution region than after the first update
(cf. Theorem 5.1). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fixed-Increment Single Sample Perceptron
Require: initialize a, k ← 0

1: repeat
2: k ← (k + 1) mod n
3: if yk is misclassified by a then
4: a← a + yk

5: end if
6: until all patterns are correctly classified
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Perceptron Convergence

Theorem: If the training samples are linearly separable, then
the sequence of weight vectors a← a + yk will terminate at
a solution vector.

Proof: Let â be a solution vector, i.e., âTyi > 0, ∀i and let α > 0 be a
scaling factor. Then it holds:

a(k + 1)− αâ = a(k)− αâ + yk

⇒ ‖a(k + 1)− αâ‖2 = ‖a(k)− αâ‖2 + 2 (a(k)− αâ)T
yk + ‖yk‖2

Since yk was misclassified the inequality aT (k)yk ≤ 0 holds.

⇒ ‖a(k + 1)− αâ‖2 ≤ ‖a(k)− αâ‖2 − 2 αâTyk︸ ︷︷ ︸
>0

+‖yk‖2

âTyk dominates ‖yk‖2 for sufficiently large α.
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Defs.: β2 := maxi ‖yi‖2, γ := mini(âTyi) > 0

⇒ ‖a(k + 1)− αâ‖2 ≤ ‖a(k)− αâ‖2 − 2αγ + β2

= ‖a(k)− αâ‖2 − β2 for α = β2/γ

The algorithm converges since ‖a(k+1)−αâ‖2 decreases at least by the
constant β2 and every error will be corrected.

Bound on the Number of Update Steps:

‖a(k + 1)− αâ‖2 ≤ ‖a(1)− αâ‖2 − kβ2 = 0

⇒ k0 =
‖a(1)− αâ‖2

β2

Choose a(1) = 0 ⇒ k0 =
α2‖â‖2

β2
=

β2‖â‖2

γ2
=

maxi ‖yi‖2‖â‖2

mini(âTyi)2

Remark: Examples orthogonal to the solution vector are difficult to learn!
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Limitations of Single-Layer Perceptrons
(Minsky & Pappert 1969)

��

��

Theorem: A size limited perceptron cannot decide in all cases
if parts of a figure are connected or separate.

Proof: The problem is reduced to the XORproblem which is not
linearly separable.
φ1, φ2 are detectors which recognize vertical bars in the up-
per left and right corner.
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Truth Table for the connectivity problem.

(1,1)(0,1)

(1,0)(0,0)

φ
2

φ1

1  1    0
0  1    1
1  0    1
0  0    0

φ  φ1 2 y

Simple (single layer) perceptrons can be trained efficiently sin-
ce classification errors can be “blamed” to components of the
weight vector a in a direct way. Credit Assignment!
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Support Vector Machine (SVM)

Extending the perceptron idea: use a linear classifier with
margin and a non-linear feature transformation .

m
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Nonlinear Transformation in Kernel Space���
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Lagrangian Optimization Theory

Optimization under constraints (Primal Problem):

Given an optimization problem with domain Ω ⊆ Rd,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m

The generalized Lagrangian function is defined as

L(w,α,β) = f(w) +
k∑

i=1

αigi(w) +
m∑

i=1

βihi(w)
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Kuhn-Tucker Conditions (1951)

Theorem : Given an optimization problem with convex do-
main Ω ⊆ Rd,

minimize f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m

with f ∈ C1 convex and gi, hi affine, necessary and sufficient
conditions for a normal point w∗ to be an optimum are the
existence of α∗, β∗ such that

∂L(w∗,α∗,β∗)
∂w

= 0
∂L(w∗,α∗,β∗)

∂β
= 0

α∗i gi(w∗) = 0, gi(w∗) ≤ 0, α∗i ≥ 0, i = 1, . . . , k
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Support Vector Machines (SVM)

Idea: linear classifier with margin and feature transformation.

Transformation from original feature space to nonlinear fea-
ture space.

yi =φ(xi) e.g. Polynomial, Radial Basis Function, ...

φ : Rd→ Re with d� e

zi =
{

+1
−1

if xi in class
{

y1

y2

Training vectors should be linearly separable after mapping!

Linear discriminant function:

g(y) = wTy + w0
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Support Vector Machine (SVM)

Find hyperplane that maximizes the margin m with

zi g(yi) = zi(wTy + w0) ≥ m for all yi ∈ Y

m

Vectors yi with zig(yi) = m are the support vectors .
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Maximal Margin Classifier

Invariance: assume that the weight vector w is normalized
(‖w‖ = 1) since a rescaling (w, w0) ← (λw, λw0),m ← λm

does not change the problem.

Condition: zi =

{
+1 wTyi + w0 ≥ m

−1 wTyi + w0 ≤ −m
∀i

Objective: maximize margin m s.t. joint condition
zi (wTyi + w0) ≥ m is met.

Learning problem: Find w with ||w|| = 1, such that the margin
m is maximized.

maximize m

subject to ∀yi ∈ Y : zi(wTyi + w0) ≥ m

Visual Computing: Joachim M. Buhmann — Machine Learning 203/225



SVM Learning
What is the margin m ?

Consider two points y+,y−

of class 1,2 which are located
on both sides of the margin
boundaries.

Transformation of objective:
rescaling w← w

m, w0 ← w0
m ⇒

yields the constraints

zi(wTyi + w0) ≥ 1

Margin:

m = 1
2‖w‖(w

Ty+−wTy−) = 1
‖w‖

y+

y−

a

y+−y−

y1

y2

m

m = 1
‖w‖ follows from inserting ±(wTy± + w0) = 1

⇒ maximizing the margin corresponds to minimizing the norm ||w|| for mar-

gin m = 1.
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SVM Lagrangian

Minimize ||w|| for a given margin m = 1

minimize T (w) = 1
2w

Tw
subject to zi(wTyi + w0) ≥ 1

Generalized Lagrange Function:

L(w, w0,α) =
1
2
wTw −

n∑
i=1

αi

[
zi(wTyi + w0)− 1

]

Functional and geometric margin: The problem formulation
with margin m = 1 is called the functional margin setting;
The original formulation refers to the geometric margin.
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Stationarity of Lagrangian
Extremality condition:

∂L(w, w0,α)
∂w

= w −
∑
i≤n

αiziyi = 0 ⇒ w =
∑
i≤n

αiziyi

∂L(w, w0,α)
∂w0

= −
∑
i≤n

αizi = 0

Resubstituting ∂L
∂w = 0, ∂L

∂w0
= 0 into the Lagrangian function L(w, w0,α)

L(w, w0,α) =
1
2
wTw −

∑
i≤n

αi

[
zi(wTyi + w0)− 1

]
=

1
2

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj −

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj +

∑
i≤n

αi

=
∑
i≤n

αi −
1
2

∑
i≤n

∑
j≤n

αiαjzizjyT
i yj (note the scalar product!)
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Dual Problem

The Dual Problem for support vector learning is

maximize W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 zizjαiαjyT

i yj

subject to ∀i αi ≥ 0 ∧
∑n

i=1 ziαi = 0

The optimal hyperplane w∗, w∗0 is given by

w∗ =
n∑

i=1

α∗i ziyi, w∗0 = −1
2

(
min

i:zi=1
w∗Tyi + max

i:zi=−1
w∗Tyi

)
where α∗ are the optimal Lagrange multipliers maximizing the
Dual Problem.
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Support Vectors

The Kuhn-Tucker Conditions for the maximal margin SVM are

α∗i (zig
∗(yi)− 1) = 0, i = 1, . . . , n

α∗i ≥ 0, i = 1, . . . , n

zig
∗(yi)− 1 ≥ 0, i = 1, . . . , n

The first one is known as the Kuhn-Tucker complementary
condition . The conditions imply

zig
∗(yi) = 1 ⇒ α∗i ≥ 0 Support Vectors (SV)

zig
∗(yi) 6= 1 ⇒ α∗i = 0 Non Support Vectors
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Optimal Decision Function

Sparsity:

g∗(y) = w∗Ty + w∗0 =
n∑

i=1

ziα
∗
iyi

Ty + w∗0

=
∑
i∈SV

ziα
∗
iyi

Ty + w∗0

Remark: only few support vectors enter the sum to evaluate
the decision function! ⇒ efficiency and interpretability

Optimal margin: wTw =
∑
i∈SV

α∗i
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Soft Margin SVM

For each trainings vector yi ∈ Y a slack variable ξi is introdu-
ced to measure the violation of the margin constraint.

Find hyperplane that maximizes the margin zig
∗(yi) ≥ m(1−ξi)

m

ξ2
ξ1

ξ3
ξ4

Vectors yi with zig
∗(yi) = m(1−ξi) are called support vectors .
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Learning the Soft Margin SVM

Slack variables are penalized by L1 norm.

minimize T (w, ξ) = 1
2w

Tw + C
∑n

i=1 ξi

subject to zi(wTyi + w0) ≥ 1− ξi

ξi ≥ 0

C controls the amount of constraint violations vs. margin maximization!

Lagrange function for soft margin SVM

L(w, w0, ξ,α,β) =
1
2
wTw + C

n∑
i=1

ξi

−
n∑

i=1

αi

[
zi(wTyi + w0)− 1 + ξi

]
−

n∑
i=1

βiξi
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Stationarity of Primal Problem

Differentiation:

∂L(w, w0, ξ,α,β)
∂w

= w −
n∑

i=1

αiziyi = 0 ⇒ w =
n∑

i=1

αiziyi

∂L(w, w0, ξ,α,β)
∂ξi

= C − αi − βi = 0
∂L(w, w0, ξ,α,β)

∂b
= −

n∑
i=1

αizi = 0

Resubstituting into the Lagrangian function L(w, w0, ξ,α,β)

L(w, w0, ξ,α,β) = 1
2w

Tw + C
∑n

i=1 ξi

−
∑n

i=1 αi

[
zi(wTyi + w0)− 1 + ξi

]
−

∑n
i=1 βiξi
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L(w, w0, ξ,α,β) = 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj + C
∑n

i=1 ξi

−
∑n

i=1

∑n
j=1 αiαjzizjyT

i yj

+
∑n

i=1 αi(1− ξi)−
∑n

i=1 βiξi

=
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj

+
∑n

i=1(C − αi − βi︸ ︷︷ ︸
=∂L

∂ξi
=0

)ξi

=
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjzizjyT

i yj
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Constaints of the Dual Problem

The dual objective function is the same as for the maximal mar-
gin SVM. The only difference is the constraint

C − αi − βi = 0

Together with βi ≥ 0 it implies

αi ≤ C

The Kuhn-Tucker complementary conditions

αi(zi(wTyi + w0)− 1 + ξi) = 0, i = 1, . . . , n

ξi(αi − C) = 0, i = 1, . . . , n

imply that nonzero slack variables can only occur when αi = C.
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Dual Problem of Soft Margin SVM

The Dual Problem for support vector learning is

maximize W (α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 zizjαiαjyT

i yj

subject to
∑n

j=1 zjαj = 0 ∧ ∀i C ≥ αi ≥ 0

The optimal hyperplane w∗ is given by

w∗ =
n∑

i=1

α∗i ziyi

where α∗ are the optimal Lagrange multipliers maximizing the
Dual Problem.

Only for support vectors it holds α∗i > 0
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Linear Programming Support Vector Machines

Idea: Minimize an estimate of the number of positive multipliers∑n
i=1 αi which improves bounds on the generalization error.

The Lagrangian for the LP-SVM is

minimize W (α, ξ) =
∑n

i=1 αi + C
∑n

i=1 ξi

subject to zi

[∑n
j=1 αjyT

i yj + w0

]
≥ 1− ξi,

αi ≥ 0, ξi ≥ 0, 1 ≤ i ≤ n

Advantage: efficient LP solver can be used.

Disadvantage: theory is not as well understood as for standard
SVMs.
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Non–Linear SVMs

Feature extraction by non linear transformation y = φ(x)

Problem:
yT

i yj = φT(xi)φ(xj)
is the inner product in a high dimensional space.

A kernel function is defined by

∀x, z ∈ Ω : K(x, z) = φT(x)φ(z)

Using the kernel function the discriminant function becomes

f(x) =
n∑

i=1

αiziK(xi,x)
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Characterization of Kernels

For a symmetric matrix K(xi,xj)|ni,j=1 (Gram matrix) there
exists an EV decomposition

K = V ΛV T

V : orthogonal matrix of eigenvectors (vti)|ni=1

Λ: diagonal matrix of eigenvalues λt

Assume all eigenvalues are nonnegative and consider mapping

φ : xi→
(√

λtvti

)n

t=1
∈ Rn, i = 1, . . . , n

Then it follows

φT(xi)φ(xj) =
n∑

t=1

λtvtivtj =
(
V ΛV T

)
ij

= Kij = K(xi,xj)
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Positivity of Kernels

Theorem: Let Ω be a finite input space with K(x, z) a symme-
tric function on Ω. Then K(x, z) is a kernel function if and only
if the matrix

K = (K(xi,xj))
n
i,j=1

is positive semi-definite (has only non-negative eigenvalues).

Extension to infinite dimensional Hilbert Spaces:

< φ(x), φ(z) >=
∞∑

i=1

λiφi(x)φi(z)
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Mercer’s Theorem

Theorem (Mercer): Let Ω be a compact subset of Rn. Suppo-
se K is a continous symmetric function such that the integral
operator Tk : L2(X)→ L2(X),

(Tkf)(·) =
∫

Ω

K(·,x)f(x)dx,

is positive, that is∫
Ω×Ω

K(x, z)f(x)f(z)dxdz > 0 ∀ f ∈ L2(Ω)

Then we can expand K(x, z) in a uniformly convergent series
in terms of Tk’s eigen-functions φj ∈ L2(Ω), with ||φj||L2 = 1
and λj > 0.
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Possible Kernels

Remark: Each kernel function, that hold Mercer’s conditions
describes an inner product in a high dimensional space. The
kernel function replaces the inner product.

Possible Kernels:

a) K(x, z) = exp
(
−||x− z||2

2σ2

)
(RBF Kernel)

b) K(x, z) = tanhκxz− b (Sigmoid Kernel)

c) K(x, z) = (xz)d (Polynomial Kernel)

K(x, z) = (xz + 1)d

d) K(x, z) : string kernels for sequences
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Kernel Engineering

Kernel composition rules: Let K1, K2 be kernels over Ω ×
Ω,Ω ⊆ Rd, a ∈ R+, f(.) a real-vealued function φ : Ω → Re

with K3 a kernel over Re × Re.

Then the following functions are kernels:

1. K(x, z) = K1(x, z) + K2(x, z),
2. K(x, z) = aK1(x, z),
3. K(x, z) = K1(x, z)K2(x, z),
4. K(x, z) = f(x)f(z),
5. K(x, z) = K3(φ(x), φ(z)),
6. K(x, z) = p(K1(x, z)), (p(x) is a polynomial with positive co-

efficients)
7. K(x, z) = exp(K1(x, z)),
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Example: Hand Written Digit Recognition

• 7291 training images und 2007 test images (16x16 pixel, 256
gray values)

Classification method test error
human classification 2.7 %
perceptron 5.9 %
support vector machines 4.0 %
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