
Machine Learning: Topic Chart

• Core problems of pattern recognition

• Bayesian decision theory

• Support vector machines

• Data clustering

• Dimension reduction
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Bayesian Decision Theory
The Problem of Statistical Decisions

Task: n objects have to be partitioned in 1, . . . , k classes, the
doubt class D and the outlier class O.

D : doubt class (→ new measurements required)
O : outlier class, definitively none of the classes 1, 2, . . . , k

Objects are characterized by feature vectors X ∈ X , X ∼
P(X) with the probability P(X = x) of feature values x.

Statistical modeling: Objects represented by data X and
classes Y are considered to be random variables, i.e.,
(X, Y ) ∼ P(X, Y ).
Conceptually, it is not mandatory to consider class labels as random since they might

be induced by legal considerations or conventions.
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Structure of the feature space X
• X ⊂ R

d

• X = X1 ×X2 × · · · × Xd with Xi ⊆ R or Xi finite.

Remark: in most situations we can define the feature space as
subsets of R

d or as tuples of real, categorial or ordinal num-
bers; sometimes we have more complicated data spaces
composed of lists, trees or graphs.

Class density / likelihood: py(x) := P(X = x|Y = y) is equal
to the probability of a feature value x given a class y.

Parametric Statistics: estimate the parameters of the class
densities py(x)

Non-Parametric Statistics: minimize the empirical risk
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Motivation of CLassification

Given are labeled data
Z = {(xi, yi) : 1 ≤ i ≤ n}

Questions:

1. What are the class boun-
daries?

2. What are the class speci-
fic densities py(x)?

3. How many modes do we
need to model py(x)?

4. ...

Figure: three Gaussian densities are fitted
to the given data samples. The crosses de-
note the principal axes of the Gaussians.
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Thomas Bayes and his Terminology

The State of Nature is modelled as a random variable!

prior: P{model}
likelihood: P{data|model}
posterior: P{model|data}
evidence: P{data}

Bayes Rule: P{model|data} =
P{data|model}P{model}

P{data}
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Ronald A. Fisher and Frequentism

Fisher, Ronald Aylmer (1890-1962): founder of frequentist
statistics together with Jerzey Neyman & Karl Pearson.

British mathematician and biologist who in-
vented revolutionary techniques for apply-
ing statistics to natural sciences.

Maximum likelihood method

Fisher information: a measure for the infor-
mation content of densities.

Sampling theory

Hypothesis testing
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Bayesianism vs. Frequentist Inference1

Bayesianism is the philosophical tenet that the mathematical theory of pro-
bability applies to the degree of plausibility of statements, or to the degree
of belief of rational agents in the truth of statements; together with Bayes
theorem, it becomes Bayesian inference. The Bayesian interpretation of
probability allows probabilities assigned to random events, but also al-
lows the assignment of probabilities to any other kind of statement.

Bayesians assign probabilities to any statement, even when no random
process is involved, as a way to represent its plausibility. As such, the
scope of Bayesian inquiries include the scope of frequentist inquiries.

The limiting relative frequency of an event over a long series of trials is
the conceptual foundation of the frequency interpretation of probability.

Frequentism rejects degree-of-belief interpretations of mathematical pro-
bability as in Bayesianism, and assigns probabilities only to random
events according to their Relative frequencies of occurrence.
1see http://encyclopedia.thefreedictionary.com/
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Bayes Rule for Known Densities and Parameters

Classifier:

ĉ : X → {1, . . . , k,D}
The assignment function ĉ maps the feature space X to the
set of classes {1, . . . , k,D}. (Outliers are neglected)

Quality of the classifier: expected risk

R(ĉ) =
∑
y≤k

P(y)Ex

[
I{ĉ(x) �=y}|Y = y

]
+ terms from D

Remark: The rational behind this choice comes from gambling. If we bet on
a particular outcome of our experiment and our gain is measured by how
often we assign the measurements to the correct class then classifier with
minimal expected risk will win on average against any other classification
rule (“Dutch books”)!
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Loss Function: L(y, z) denotes the loss for the decision z if
class y is correct.

0-1 loss: all classes are treated the same!

L0−1(y, z) =

⎧⎪⎪⎨
⎪⎪⎩

0 if z = y (correct decision)

1 if z �= y and z �= D (wrong decision)

d if z = D (no decision)

• weighted classification costs L(y, z) ∈ R
+ are frequently

used, e.g. in medicine
classification costs can also be asymmetric, that means
L(y, z) �= L(z, y)
((z, y) ∼ (stomach cancer, stress related stomach problem).
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Risk function of the classifier is the expected loss/costs:

R(ĉ, y) = Ex [L(y, ĉ(x))|Y = y]

=
∑
z≤k

(
L(y, z)P{ĉ(x) = z|Y = y}

+L(y,D)P{ĉ(x) = D|Y = y}
)

= P{ĉ(x) �= y ∧ ĉ(x) �= D|Y = y}︸ ︷︷ ︸
pmc(y) misclassification probability

+ d · P{ĉ(x) = D|Y = y}︸ ︷︷ ︸
pd(y) doubt probability

Total risk of the classifier: (πy := P(Y = y))

R(ĉ) =
∑
z≤k

πz pmc(z) + d
∑
z≤k

πz pd(z) = EC

[R(ĉ, C)
]
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Asymptotic average loss

lim
n→∞

1
n

∑
j≤n

L(cj, ĉ(xj)) = lim
n→∞ R̂(ĉ) = R(ĉ),

where {(xj, cj)|1 ≤ j ≤ n} is a random sample set of size n.
This formula can be interpreted as the expected loss with empirical distribution as probability model.

Posterior class probability : Let

p(y|x) ≡ P{Y = y|X = x} =
πypy(x)∑
z πzpz(x)

be the posterior of the class y given X = x.

(The ‘Partition of One” πypy(x)/
∑

z πzpz(x) results from the normalizati-

on
∑

z p(z|x) = 1. )
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Bayes Optimal Classifier

Theorem 1 The classification rule which minimizes the total
risk for 0 − 1 loss is

c(x) =

{
y if p(y|x) = maxz≤k p(z|x) > 1 − d,

D if p(y|x) ≤ 1 − d ∀y.

Generalization to arbitrary loss functions

c(x) =

{
y if

∑
z L(z, y)p(z|x) = minρ≤k

∑
z L(z, ρ)p(z|x) ≤ d,

D else .

Bayes classifier: Select the class with highest πypy(x) value if
it exceeds the costs for not making a decision, i.e., πypy(x) >

(1 − d)p(x).
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Proof: Calculate the total expected loss R(ĉ)

R(ĉ) = EX

[
EY

[
L0−1(Y, ĉ(x))|X = x

]]
=

∫
X

EY

[
L0−1(Y, ĉ(x))|X = x

]
p(x)dx with p(x) =

∑
z≤k

πzpz(x)

Minimize the conditional expectation value since it depends only on ĉ.

ĉ(x) = argminc̃∈{1,...,k,D}E
[
L0−1(Y, c̃)|X = x

]
= argminc̃∈{1,...,k,D}

∑
z≤k

L0−1(z, c̃)p(z|x)

=

{
argminc̃∈{1,...,k} (1 − p(c̃|x)) if d > minc(1 − p(c|x))
D else

=

{
argmaxc̃∈{1,...,k}p(c̃|x) if 1 − d < maxc p(c|x)
D else
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Outliers

• Modeling by an outlier class πO with pO(x)

• “Novelty Detection”: Classify a measurement as an outlier
if

πOpO(x) ≥ max
{

(1 − d)p(x), max
z

πzpz(x)
}

• The outlier concept causes conceptual problems and it does not fit to the
statistical decision theory since outliers indicate an erroneous or incom-
plete specification of the statistical model!

• The outlier class is often modeled by a uniform distribution.
Attention: Normalization of uniform distribution does not exist in many
feature spaces!

=⇒ Limit the support of the measurement space or put a (Gaussian)
measure on it!
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Class Conditional Densities and Posteriors for 2
Classes

Class-conditional probability den-
sity function

Posterior probabilities for priors
P(y1) = 2

3,P(y2) = 1
3.
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Likelihood Ratio for 2 Class Example

x

θa

p(x|ω1)
p(x|ω2)

θb

R1R2 R1R2
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Discriminant Functions gl

discriminant
functions

input

g1(x) g2(x) gc(x). . .

x1
x2 xd. . .x3

costs

action
(e.g., classification)

• Discriminant function: gz(x) = P{Y = y|X = x}

• Class decision: gy(x) > gz(x) ∀z �= y ⇒ class y.

• Different discriminant functions can yield the same decision:
g̃y(x) = log P{x|y} + log πy; minimize implementation problems!
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Example for Discriminant Functions
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Adaptation of Discriminant Functions gl
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-
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The red connections (weights) are adapted in such a way that the teacher

signal is imitated by the discriminant function.
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Example Discriminant Functions: Normal
Distributions

The Likelihood of class y is Gaussian distributed.

py(x) =
1√

(2π)d|Σy|
exp

(
−1

2
(x − μy)TΣ−1

y (x − μy)
)

Special case: Σy = σ2
I

gy(x) = log py(x) + log πy

= − 1
2σ2

‖x − μy‖2 + log πy + const.
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⇒ Decision surface between class z and y:

− 1
2σ2

‖x − μz‖2 + log πz = − 1
2σ2

‖x − μy‖2 + log πy

−‖x‖2 + 2x · μz − ‖μz‖2 + 2σ2 log πz = −‖x‖2 + 2x · μy − ‖μy‖2 + 2σ2 log πy

⇒ 2x · (μz − μy) − ‖μz‖2 + ‖μy‖2 + 2σ2 log
πz

πy
= 0

Linear decision rule: wT (x − x0) = 0

with w = μz − μy x0 =
1
2
(μz + μy) − σ2(μz − μy)

‖μz − μy‖2
log

πz

πy
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Decision Surface for Gaussians in 1,2,3
Dimensions
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Multi Class Case

R3
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R1
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R4

Decision regions for four Gaussian distributions. Even for such a small num-

ber of classes the discriminant functions show a complex form.
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Example: Gene Expression Data

The expression of genes is measured for various patients. The
expression profiles provide information of the metabolic state of
the cells, meaning that they could be used as indicators for di-
sease classes. Each patient is represented as a vector in a high
dimensional (≈ 10000) space with Gaussian class distribution.
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Parametric Models for Class Densities

If we would know the prior probabilities and the class conditio-
nal probabilities then we could calculate the optimal classifier.
But we don’t!

Task: Estimate p(c|x; θ) from samples Z = {(x1, y1), . . . , (xn, yn)}
for classification.

Data are sorted according to their classes:
Xy = {X1y, . . . , Xny,y} where Xiy ∼ P{X|Y = y; θy}

Question: How can we use the information in samples to esti-
mate θy?

Assumption: classes can be separated and treated indepen-
dently! Xy is not informative w.r.t. θα, α �= y
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Maximum Likelihood Estimation Theory

Likelihood of the data set: P{Xy|θy} =
∏

i≤ny
p(xiy|θy)

Estimation principle: Select the parameter θ̂y which maximi-
zes the likelihood, that means

θ̂y = arg max
θy

P{Xy|θy}

Procedure: Find the extreme value of the log-likelihood functi-
on

∇θy log P{X |θy} = 0

∂

∂θy

∑
i≤n

log p(xi|θy) = 0
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Remark

Bias of an estimator: bias(θ̂n) = E{θ̂n} − θ.

Consistent estimator: A point estimator θ̂n of a parameter θ

is consistent if θ̂n
P→ θ.

Asymptotic Normality of Maximum Likelihood estimates:

(θ̂n − θ)/
√

V{θ̂n} � N (0, 1).

Alternative to ML class density estimation: discriminative
learning by maximizing the a posteriori distribution P{θy|Xy}
(details of the density do not have to be modelled since they might not influence the po-

sterior)
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Example: Multivariate Normal Distribution

Expectation values of a normal distribution and its estimation:
Class index has been omitted for legibility reasons (θy → θ).

log p(xi|θ) = −1
2
(xi − μ)TΣ−1(xi − μ) − d

2
log 2π − 1

2
log |Σ|

∂

∂μ

∑
i≤n

log p(xi|θ) =
1
2

∑
i≤n

Σ−1(xi − μ) +
1
2

∑
i≤n

(
(xi − μ)Σ−1

)T
= 0

Σ−1
∑
i≤n

(xi − μ) = 0 ⇒ μ̂n =
1
n

∑
i

xi estimator for μ

Average value formula results from the quadratic form.

Unbiasedness: E[μ̂n] =
1
n

∑
i≤n

Exi = E[x] = μ
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ML estimation of the variance (1d case)

∂

∂σ2

∑
i≤n

log p(xi|θ) = − ∂

∂σ2

∑
i≤n

1
σ2

‖xi − μ‖2 − n

2
log(2πσ2)

=
1
2

∑
i≤n

σ−4‖xi − μ‖2 − n

2
σ−2 = 0

⇒ σ̂2
n =

1
n

∑
i≤n

‖xi − μ‖2

Multivariate case Σ̂n =
1
n

∑
i≤n

(xi − μ)(xi − μ)T

Σ̂n is biased, e.g., EΣ̂n �= Σ, if μ is unknown.
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