

linear vs. non-linear projections example:		Overview Linear Projections:	
$\frac{3}{2}$		 Principal Component Analysis (PCA) Exploratory Projection Pursuit Non-Linear Projections: locally linear embedding (LLE) more methods in "Machine Learning II" 	
Visual Computing: Joachim M. Buhmann — Machine Learning	272/290	Visual Computing: Joachim M. Buhmann — Machine Learning	273/290

Linear Projection

from high-dim. space \mathbb{R}^d to low-dim. space \mathbb{R}^m :

z = Wx

where

 $x \in \mathbb{R}^d$ $z \in \mathbb{R}^m$

W is a linear map (matrix):

- orthogonal projection: row vectors of W are orthonormal
- if m = 1: W reduces to a row vector w^{\top}

Note: while the projection is linear, the objective function (see below) may be non-linear!

Visual Computing: Joachim M. Buhmann — Machine Learning

Principal Component Analysis (PCA)

Idea:

274/290

276/290

- Shift the coordinate system in the center of mass of the given data points
- · and rotate it to align coordinate axes with principal axes
- to capture as much *interesting signal* as possible: maximum variance of data.

275/290

277/290

PCA: formal setup

Given are data points $x^s \in \mathbb{R}^d$, s = 1, ..., n.

New Rotated Coordinate System: Define a new set of d orthonormal basis vectors $\phi_i \in \mathbb{R}^d$, i.e.,

 $\phi_i^\top \phi_j = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{otherwise} \end{cases}$

data point in new coordinate system: $x^s = \sum^a y^s_i \phi_i$

Visual Computing: Joachim M. Buhmann — Machine Learning

Approximation of data points x^s : use only $m \le d$ coordinates to optimally approximate x^s . Replace coordinates $m < i \le d$ by preselected, optimized constants b_i :

$$\hat{x}^s(m) = \sum_{i \leq m} y_i^s \phi_i + \sum_{m < i \leq d} b_i \phi_i$$

Note: the b_i do not depend on index s, i.e., cannot be adapted to the individual data points x^s (\rightarrow shift to center of mass).

Approximation Error for data point x^s :

$$\begin{split} \Delta x^s &= x^s - \hat{x}^s(m) &= x^s - \sum_{i \leq m} y^s_i \phi_i - \sum_{m < i \leq d} b_i \phi_i \\ &= \sum_{m < i \leq d} (y^s_i - b_i) \phi_i \end{split}$$

Visual Computing: Joachim M. Buhmann — Machine Learning

A Quality-Measure of the Projection: Mean Squared Error

$$\mathsf{E}\{\|\Delta x^{s}(m)\|^{2}\} \ = \ \sum_{m < i \leq d} \mathsf{E}\{(y^{s}_{i} - b_{i})^{2}\}$$

"Interestingness" criterion in PCA: Choose the representation with minimal $E\{\|\Delta x^s(m)\|^2\}$, i.e., optimize the b_i, ϕ_i to minimize $E\{\|\Delta x^s(m)\|^2\}$.

Remark: An equivalent criterion is to maximize mutual information between original data points and their projections (assumption: Gaussian distribution of data).

Necessary condition for minimum:

$$\frac{\partial}{\partial b_i} \mathsf{E}\{(y_i^s - b_i)^2\} = -2(\mathsf{E}\{y_i^s\} - b_i) = 0$$
$$\Rightarrow b_i = \mathsf{E}\{y_i^s\} = \phi_i^\top \mathsf{E}\{x^s\}$$

Visual Computing: Joachim M. Buhmann — Machine Learning

278/290

Inserting into the error criterion:

$$\begin{split} \|\Delta x^{s}\|^{2} \} &= \sum_{m < i \leq d} \mathsf{E}\left\{(y_{i}^{s} - \mathsf{E}\{y_{i}^{s}\})^{2}\right\} \\ &= \sum_{m < i \leq d} \phi_{i}^{\top} \underbrace{\mathsf{E}\{(x^{s} - \mathsf{E}\{x^{s}\})(x^{s} - \mathsf{E}\{x^{s}\})^{\top}\}}_{=:\Sigma_{X}} \phi_{i} \end{split}$$

Optimal Choice of Basis Vectors: Choose the eigenvectors of the covariance matrix Σ_X , i.e.,

$$\Sigma_X \phi_i = \lambda_i \phi_i$$

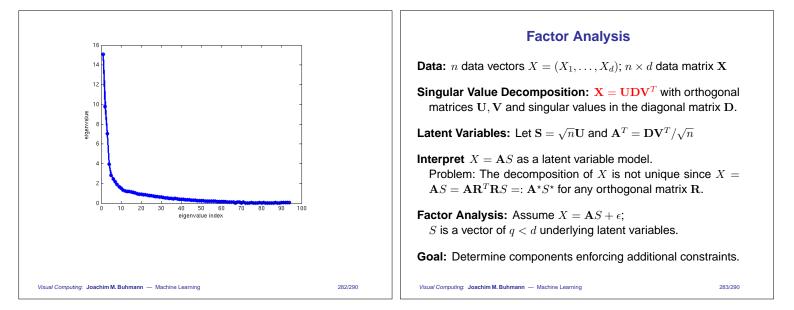
Costs of PCA:

E{

$$\mathsf{E}\{\|\Delta x^{s,\mathsf{opt}}(m)\|^2\} = \sum_{m < i \le d} \lambda_i$$

Visual Computing: Joachim M. Buhmann — Machine Learning

Proof Idea: Choose an arbitrary orthonormal basis **PCA: Summary** $\psi_i = \sum_j a_{ij} \phi_j$, i.e., $a_i^{\top} a_k = \delta_{ik}$. $\Rightarrow \quad \mathsf{E}\{\|\Delta X(m)\|^2\} \ = \ \sum_{i=m+1}^d a_i^\mathsf{T} \Lambda a_i$ compute sample mean $\mathsf{E}\{x^s\}$ and covariance matrix Σ_X = $\mathsf{E}\{(x^{s} - \mathsf{E}\{x^{s'}\})(x^{s} - \mathsf{E}\{x^{s'}\})^{\top}\}\$ where Λ ... diagonal matrix with λ_i on diagonal. compute spectral decomposition $\Sigma_X = \Phi \Lambda \Phi^{\top}$ Minimize this functional under the constraint that the vectors transformed data points: $y^s = \Phi^{\top}(x^s - \mathsf{E}\{x^{s'}\})$ a_i are orthonormal, and use the fact that, for i > m, δ_i are the smallest eigenvalues. projection: for each y^s , retain only those components *i* where \Rightarrow $a_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ is a solution, λ_i is among the largest *m* eigenvalues. but any rotation in the subspace of the d - m eigenvectors with the smallest d-m eigenvalues also minimizes the criterion. \Rightarrow The eigenvectors ϕ_i minimize the error criterion. Flower 4: Standard Flowerfa-Visual Computing: Joachim M. Buhmann — Machine Learning Visual Computing: Joachim M. Buhmann — Machine Learning 280/290 281/290



Independent Component Analysis

Find components which are statistically independent.

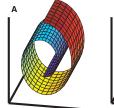
Measure of Dependence: Mutual Information

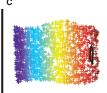
$$\mathcal{I}(Y) = \sum_{j \le d} H(Y_j) - H(Y)$$

Strategy: find a decomposition $X = \mathbf{A}S$ which minimizes $\mathcal{I}(Y) = \mathcal{I}(\mathbf{A}^T X)$

Procedure: perform a factor analysis and rotate the components to make them mutually independent.

Non-Linear Projection Methods example: unfolding the locally linear, but globally highly nonlinear structure:





What is the result of a linear projection?

284/290

285/290

Locally Linear Embedding (LLE)

Saul & Roweis: Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science 290, 2323(2000)

non-linear projection method

Basic Idea: use local patches

- each data point is related to a small number k of its neighbors
- relation within a patch is modeled in a linear way
- *k* is the only free parameter

LLE Algorithm

- 1) compute neighbors of each data point $x_s, s = 1, ..., n$.
- **2)** approximate each data point $x_s \in \mathbb{R}^p$ by $\hat{x}^s = \sum_t W_{st}x_t$, where the x_t 's are the neighbors of x_s (linear approximation): find weights W_{st} that minimize

$$\mathsf{cost}(W) = \sum_{s} \|x_s - \hat{x}^s\|^2 = \sum_{s} \|x_s - \sum_{t} W_{st} x_t\|^2$$

3) project to low-dimensional space: assume that weights W_{st} capture local geometry also in low-dim. space. Given the weights W_{st} from 2), find projected points y^s by minimizing

Visual Computing: Joachim M. Buhmann — Machine Learning

$$\mathsf{cost}(y) = \sum_{s} \|y_s - \sum_{t} W_{st} y_t\|^2 \qquad y_s \in \mathbb{R}^d, \ d \ll p$$

287/290

Visual Computing: Joachim M. Buhmann — Machine Learning

286/290

