
Machine Learning: Topic Chart

• Core problems of pattern recognition

• Bayesian decision theory

• Perceptrons and Support vector machines

• Data clustering

• Dimension reduction
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What is Dimensionality Reduction ?

Goal: Automatically find “interesting” projections from high-
dimensional feature space to low-dimensional space.

Example for structure in high-dimensional spaces: IBM ran-
dom number generator RANDU(early FORTRAN lib.), triplets
(xn+2, xn+1, xn) lie on 15 parallel planes.
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Reasons for Dimensionality Reduction

select most interesting dimensions in preprocessing step:

• data compression
• feature selection
• complexity reduction

• Example: face recognition, m×n grey-scale image lives in
mn-dimensional space.

visualization of data: project to 1, 2 or 3 dimensional space.
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When does Dimensionality Reduction work?

“Noise dimensions”: many variables may have very small va-
riation, and may hence be ignored

Decoupling: many variables may be correlated / dependent,
hence a new set of independent variables is preferable.

Problem: projection is “smoothing”: (high-dim.) structure is
obscured, but never enhanced.

Goal: find sharpest / most interesting projections

Visual Computing: Joachim M. Buhmann — Machine Learning 271/290



linear vs. non-linear projections

example:

What is the result of linear vs. non-linear projections?
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Overview

Linear Projections:

• Principal Component Analysis (PCA)
• Exploratory Projection Pursuit

Non-Linear Projections:

• locally linear embedding (LLE)
• more methods in “Machine Learning II”
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Linear Projection

from high-dim. space R
d to low-dim. space R

m:

z = Wx

where
x ∈ R

d

z ∈ R
m

W is a linear map (matrix):

• orthogonal projection: row vectors of W are orthonormal
• if m = 1: W reduces to a row vector w�

Note: while the projection is linear, the objective function (see
below) may be non-linear!
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Principal Component Analysis (PCA)

Idea:

• Shift the coordinate system in the center of mass of the
given data points

• and rotate it to align coordinate axes with principal axes
• to capture as much interesting signal as possible: maxi-

mum variance of data.
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PCA: formal setup

Given are data points xs ∈ R
d, s = 1, ..., n.

New Rotated Coordinate System: Define a new set of d or-
thonormal basis vectors φi ∈ R

d, i.e.,

φ�i φj =

{
1 for i = j

0 otherwise

data point in new coordinate system: xs =
d∑

i=1

ys
i φi
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Approximation of data points xs : use only m ≤ d coordina-
tes to optimaly approximate xs. Replace coordinates m <

i ≤ d by preselected, optimized constants bi:

x̂s(m) =
∑
i≤m

ys
iφi +

∑
m<i≤d

biφi

Note: the bi do not depend on index s, i.e., cannot be adapted
to the individual data points xs (→ shift to center of mass).

Approximation Error for data point xs:

Δxs = xs − x̂s(m) = xs −
∑
i≤m

ys
iφi −

∑
m<i≤d

biφi

=
∑

m<i≤d

(ys
i − bi)φi
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A Quality-Measure of the Projection: Mean Squared Error

E{‖Δxs(m)‖2} =
∑

m<i≤d

E{(ys
i − bi)2}

“Interestingness” criterion in PCA: Choose the representa-
tion with minimal E{‖Δxs(m)‖2}, i.e., optimize the bi, φi to
minimize E{‖Δxs(m)‖2}.

Remark: An equivalent criterion is to maximize mutual infor-
mation between original data points and their projections (as-
sumption: Gaussian distribution of data).

Necessary condition for minimum:

∂

∂bi
E{(ys

i − bi)2} = −2
(
E{ys

i } − bi
)

= 0

⇒ bi = E{ys
i } = φ�i E{xs}

Visual Computing: Joachim M. Buhmann — Machine Learning 278/290

Inserting into the error criterion:

E{‖Δxs‖2} =
∑

m<i≤d

E
{
(ys

i − E{ys
i })2

}
=

∑
m<i≤d

φ�i E{(xs − E{xs})(xs − E{xs})�}︸ ︷︷ ︸
=:ΣX

φi

Optimal Choice of Basis Vectors: Choose the eigenvectors
of the covariance matrix ΣX, i.e.,

ΣXφi = λiφi

Costs of PCA:

E{‖Δxs,opt(m)‖2} =
∑

m<i≤d

λi
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Proof Idea: Choose an arbitrary orthonormal basis
ψi =

∑
j aijφj, i.e., a�i ak = δik.

⇒ E{‖ΔX(m)‖2} =
d∑

i=m+1

aT
i Λai

where Λ ... diagonal matrix with λi on diagonal.

Minimize this functional under the constraint that the vectors
ai are orthonormal, and use the fact that, for i > m, δi are
the smallest eigenvalues.

⇒ ai = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0) is a solution,

but any rotation in the subspace of the d − m eigenvectors
with the smallest d−m eigenvalues also minimizes the crite-
rion.

⇒ The eigenvectors φi minimize the error criterion.
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PCA: Summary

compute sample mean E{xs} and covariance matrix ΣX =
E{(xs − E{xs′})(xs − E{xs′})�}

compute spectral decomposition ΣX = ΦΛΦ�

transformed data points: ys = Φ�(xs − E{xs′})

projection: for each ys, retain only those components i where
λi is among the largest m eigenvalues.
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Factor Analysis

Data: n data vectors X = (X1, . . . , Xd); n× d data matrix X

Singular Value Decomposition: X = UDVT with orthogonal
matrices U,V and singular values in the diagonal matrix D.

Latent Variables: Let S =
√
nU and AT = DVT/

√
n

Interpret X = AS as a latent variable model.
Problem: The decomposition of X is not unique since X =
AS = ARTRS =: A�S� for any orthogonal matrix R.

Factor Analysis: Assume X = AS + ε;
S is a vector of q < d underlying latent variables.

Goal: Determine components enforcing additional constraints.
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Independent Component Analysis

Find components which are statistically independent.

Measure of Dependence: Mutual Information

I(Y ) =
∑
j≤d

H(Yj) −H(Y ).

Strategy: find a decomposition X = AS which minimizes
I(Y ) = I(ATX)

Procedure: perform a factor analysis and rotate the com-
ponents to make them mutually independent.
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Non-Linear Projection Methods

example: unfolding the locally linear, but globally highly nonli-
near structure:

What is the result of a linear projection?
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Locally Linear Embedding (LLE)

Saul & Roweis: Nonlinear Dimensionality Reduction by Locally Linear Em-

bedding, Science 290, 2323(2000)

non-linear projection method

Basic Idea: use local patches

• each data point is related to a small number k of its neigh-
bors

• relation within a patch is modeled in a linear way
• k is the only free parameter
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LLE Algorithm

1) compute neighbors of each data point xs, s = 1, ..., n.

2) approximate each data point xs ∈ R
p by x̂s =

∑
tWstxt,

where the xt’s are the neighbors of xs (linear approximation):
find weights Wst that minimize

cost(W ) =
∑

s

‖xs − x̂s‖2 =
∑

s

‖xs −
∑

t

Wstxt‖2

3) project to low-dimensional space: assume that weights Wst

capture local geometry also in low-dim. space. Given the
weights Wst from 2), find projected points ys by minimizing

cost(y) =
∑

s

‖ys −
∑

t

Wstyt‖2 ys ∈ R
d, d� p
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Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point �X

i
(for example by

using the K nearest neigh-
bors). (2) Compute the
weights W

ij
that best lin-

early reconstruct �X
i
from

its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors �Y

i
best

reconstructed by W
ij
, mini-

mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights W

ij
and vectors Y

i

are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.
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Remarks on LLE

constraints on weights:

• Wst = 0 unless xs and xt are neighbors.
• normalization: for all s:

∑
tWst = 1.

Reason for constraints: this ensures invariance to rotation,
rescaling, translation of data points.

Optimization:

• step 2): solve least squares problem
• step 3): solve n× n eigenvector problem
• no local minima
• computational complexity is quadratic in n
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Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.

Visual Computing: Joachim M. Buhmann — Machine Learning 290/290


