
Machine Learning: Topic Chart

• Core problems of pattern recognition

• Bayesian decision theory

• Perceptrons and Support vector machines

• Data clustering

• Dimension reduction

Visual Computing: Joachim M. Buhmann — Machine Learning 268/290



What is Dimensionality Reduction ?

Goal: Automatically find “interesting” projections from high-
dimensional feature space to low-dimensional space.

Example for structure in high-dimensional spaces: IBM ran-
dom number generator RANDU(early FORTRAN lib.), triplets
(xn+2, xn+1, xn) lie on 15 parallel planes.
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Reasons for Dimensionality Reduction

select most interesting dimensions in preprocessing step:

• data compression
• feature selection
• complexity reduction

• Example: face recognition, m×n grey-scale image lives in
mn-dimensional space.

visualization of data: project to 1, 2 or 3 dimensional space.
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When does Dimensionality Reduction work?

“Noise dimensions”: many variables may have very small va-
riation, and may hence be ignored

Decoupling: many variables may be correlated / dependent,
hence a new set of independent variables is preferable.

Problem: projection is “smoothing”: (high-dim.) structure is
obscured, but never enhanced.

Goal: find sharpest / most interesting projections
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linear vs. non-linear projections

example:

What is the result of linear vs. non-linear projections?
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Overview

Linear Projections:

• Principal Component Analysis (PCA)
• Exploratory Projection Pursuit

Non-Linear Projections:

• locally linear embedding (LLE)
• more methods in “Machine Learning II”
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Linear Projection

from high-dim. space Rd to low-dim. space Rm:

z = Wx

where
x ∈ Rd

z ∈ Rm

W is a linear map (matrix):

• orthogonal projection: row vectors of W are orthonormal
• if m = 1: W reduces to a row vector w>

Note: while the projection is linear, the objective function (see
below) may be non-linear!
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Principal Component Analysis (PCA)

Idea:

• Shift the coordinate system in the center of mass of the
given data points

• and rotate it to align coordinate axes with principal axes
• to capture as much interesting signal as possible: maxi-

mum variance of data.
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PCA: formal setup

Given are data points xs ∈ Rd, s = 1, ..., n.

New Rotated Coordinate System: Define a new set of d or-
thonormal basis vectors φi ∈ Rd, i.e.,

φ>i φj =

{
1 for i = j

0 otherwise

data point in new coordinate system: xs =
d∑

i=1

ys
i φi
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Approximation of data points xs : use only m ≤ d coordina-
tes to optimaly approximate xs. Replace coordinates m <

i ≤ d by preselected, optimized constants bi:

x̂s(m) =
∑
i≤m

ys
iφi +

∑
m<i≤d

biφi

Note: the bi do not depend on index s, i.e., cannot be adapted
to the individual data points xs (→ shift to center of mass).

Approximation Error for data point xs:

∆xs = xs − x̂s(m) = xs −
∑
i≤m

ys
iφi −

∑
m<i≤d

biφi

=
∑

m<i≤d

(ys
i − bi)φi
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A Quality-Measure of the Projection: Mean Squared Error

E{‖∆xs(m)‖2} =
∑

m<i≤d

E{(ys
i − bi)2}

“Interestingness” criterion in PCA: Choose the representa-
tion with minimal E{‖∆xs(m)‖2}, i.e., optimize the bi, φi to
minimize E{‖∆xs(m)‖2}.

Remark: An equivalent criterion is to maximize mutual infor-
mation between original data points and their projections (as-
sumption: Gaussian distribution of data).

Necessary condition for minimum:

∂

∂bi
E{(ys

i − bi)2} = −2
(
E{ys

i } − bi
)

= 0

⇒ bi = E{ys
i } = φ>i E{xs}
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Inserting into the error criterion:

E{‖∆xs‖2} =
∑

m<i≤d

E
{
(ys

i − E{ys
i })2

}
=

∑
m<i≤d

φ>i E{(xs − E{xs})(xs − E{xs})>}︸ ︷︷ ︸
=:ΣX

φi

Optimal Choice of Basis Vectors: Choose the eigenvectors
of the covariance matrix ΣX, i.e.,

ΣXφi = λiφi

Costs of PCA:

E{‖∆xs,opt(m)‖2} =
∑

m<i≤d

λi
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Proof Idea: Choose an arbitrary orthonormal basis
ψi =

∑
j aijφj, i.e., a>i ak = δik.

⇒ E{‖∆X(m)‖2} =
d∑

i=m+1

aT
i Λai

where Λ ... diagonal matrix with λi on diagonal.

Minimize this functional under the constraint that the vectors
ai are orthonormal, and use the fact that, for i > m, δi are
the smallest eigenvalues.
⇒ ai = (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0) is a solution,

but any rotation in the subspace of the d − m eigenvectors
with the smallest d−m eigenvalues also minimizes the crite-
rion.

⇒ The eigenvectors φi minimize the error criterion.
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PCA: Summary

compute sample mean E{xs} and covariance matrix ΣX =
E{(xs − E{xs′})(xs − E{xs′})>}

compute spectral decomposition ΣX = ΦΛΦ>

transformed data points: ys = Φ>(xs − E{xs′})

projection: for each ys, retain only those components i where
λi is among the largest m eigenvalues.
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Factor Analysis

Data: n data vectors X = (X1, . . . , Xd); n× d data matrix X

Singular Value Decomposition: X = UDVT with orthogonal
matrices U,V and singular values in the diagonal matrix D.

Latent Variables: Let S =
√
nU and AT = DVT/

√
n

Interpret X = AS as a latent variable model.
Problem: The decomposition of X is not unique since X =
AS = ARTRS =: A?S? for any orthogonal matrix R.

Factor Analysis: Assume X = AS + ε;
S is a vector of q < d underlying latent variables.

Goal: Determine components enforcing additional constraints.
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Independent Component Analysis

Find components which are statistically independent.

Measure of Dependence: Mutual Information

I(Y ) =
∑
j≤d

H(Yj)−H(Y ).

Strategy: find a decomposition X = AS which minimizes
I(Y ) = I(ATX)

Procedure: perform a factor analysis and rotate the com-
ponents to make them mutually independent.
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Non-Linear Projection Methods

example: unfolding the locally linear, but globally highly nonli-
near structure:

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682

(1998).
37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-

tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257–297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/;yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.

Proc. Syst. 5, 50 (1993).
42. In order to evaluate the fits of PCA, MDS, and Isomap

on comparable grounds, we use the residual variance

1 – R2(D̂M , DY). DY is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D̂M is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix DX (except
with the handwritten “2”s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of D̂M and DY.

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {xi , yi} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors WXi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε~W ! 5 O
i

U WXi2SjWij
WXjU

2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost
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ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323

What is the result of a linear projection?
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Locally Linear Embedding (LLE)

Saul & Roweis: Nonlinear Dimensionality Reduction by Locally Linear Em-

bedding, Science 290, 2323(2000)

non-linear projection method

Basic Idea: use local patches

• each data point is related to a small number k of its neigh-
bors

• relation within a patch is modeled in a linear way
• k is the only free parameter
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LLE Algorithm

1) compute neighbors of each data point xs, s = 1, ..., n.

2) approximate each data point xs ∈ Rp by x̂s =
∑

tWstxt,
where the xt’s are the neighbors of xs (linear approximation):
find weights Wst that minimize

cost(W ) =
∑

s

‖xs − x̂s‖2 =
∑

s

‖xs −
∑

t

Wstxt‖2

3) project to low-dimensional space: assume that weights Wst

capture local geometry also in low-dim. space. Given the
weights Wst from 2), find projected points ys by minimizing

cost(y) =
∑

s

‖ys −
∑

t

Wstyt‖2 ys ∈ Rd, d� p
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function subject to two constraints: first, that
each data point WXi is reconstructed only from
its neighbors (5), enforcing Wij 5 0 if WXj does

not belong to the set of neighbors of WXi;
second, that the rows of the weight matrix
sum to one: SjWij 5 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
,, D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation WXi is mapped to a low-dimensional
vector WYi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates WYi to minimize the
embedding cost function

F~Y ! 5 O
i

U WYi 2 SjWij
WYjU

2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates WYi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors WYi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N 3 N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates WYi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point WXi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct WXi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors WYi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.

R E P O R T S
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Remarks on LLE

constraints on weights:

• Wst = 0 unless xs and xt are neighbors.
• normalization: for all s:

∑
tWst = 1.

Reason for constraints: this ensures invariance to rotation,
rescaling, translation of data points.

Optimization:

• step 2): solve least squares problem
• step 3): solve n× n eigenvector problem
• no local minima
• computational complexity is quadratic in n
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each data point WXi is reconstructed only from
its neighbors (5), enforcing Wij 5 0 if WXj does

not belong to the set of neighbors of WXi;
second, that the rows of the weight matrix
sum to one: SjWij 5 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.
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exists a linear mapping—consisting of a
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maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
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struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation WXi is mapped to a low-dimensional
vector WYi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates WYi to minimize the
embedding cost function

F~Y ! 5 O
i

U WYi 2 SjWij
WYjU

2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates WYi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors WYi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N 3 N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates WYi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point WXi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct WXi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors WYi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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