Outline

Fourier Transform

Convolution

Image Restoration: Linear Filtering

Diffusion Processes for Noise Filtering

- linear scale space theory
- Gauss-Laplace pyramid for image representation
- nonlinear diffusion in the Malik Perona sense

```
Visual Computing: Joachim M. Buhmann
```

66/102

Likewise, *chemicals diffuse* from regions of hight concentration to regions with low concentrations.

Idea: Utilize the physical process of *diffusion* to smooth noisy images. *Image intensities* follow a diffusive dynamics which terminates with a homogeneous image of average intensity.

Mathematics of Diffusion: concentration differences $\nabla_{\mathbf{x}} f(\mathbf{x}, t)$ of a quantity $f(\mathbf{x}, t)$ (here pixel intensities) cause a flux

$$\begin{array}{rcl} j & : & \mathbb{R}^2 \times \mathbb{R} & \to & \mathbb{R}^2, \\ & & (\mathbf{x},t) & \mapsto & (j_x(\mathbf{x},t), j_y(\mathbf{x},t)) =: j(\mathbf{x},t) \end{array}$$

which transports $f(\mathbf{x},t)$ from high concentration regions to low ones.

Linear Diffusion and Image Processing

Heat equation and diffusion processes: We observe experimentally that *heat diffuses* from the heated part of a metal beam to the cooled end. The temperature decay is linear under stationary conditions.

Fick's Law: The flux $j(\mathbf{x})$ is proportional to the concentration differences (linearity!) and **D** denotes the diffusion tensor:

$$j(\mathbf{x}) = -\mathbf{D}\nabla f(\mathbf{x}, t)$$

Continuity equation: Changes in f can only be achieved by transport, not by "destroying" f, i.e.,

$$\partial_t f = -\nabla \cdot j = -\mathsf{div}\; j$$

Diffusion equation: Insert Fick's law into the continuity equation yields

$$\partial_t f(\mathbf{x}, t) = \nabla \cdot \left(\mathbf{D} \nabla f(\mathbf{x}, t) \right)$$

Variations of the diffusion process

- homogeneous diffusion: D is space independent.
- *inhomogeneous* diffusion: D is a function of x, i.e., depends on the space.
- *isotropic* diffusion: $\nabla f || j$, i.e., the gradient is parallel to the flux.
- *nonlinear* diffusion: the diffusion tensor **D** depends on *f*.

• scalar diffusion: $\mathbf{D} = D \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Visual Computing: Joachim M. Buhmann

70/102

Fourier transformed diffusion equation

$$\frac{\partial}{\partial t}\hat{f}(u,v,t) = -4\pi^2 D(u^2 + v^2)\hat{f}(u,v,t)$$

Integrate w.r.t. time: Ordinary differential equation in time.

$$\begin{aligned} \frac{d\hat{f}(u,v,t)}{\hat{f}(u,v,t)} &= -4\pi^2 D(u^2 + v^2) dt \\ \ln \hat{f}(u,v,t) &= -4\pi^2 D(u^2 + v^2) t + \text{const} \\ \hat{f}(u,v,t) &= \hat{f}(u,v,0) \exp\left(-4\pi^2 D(u^2 + v^2) t\right) \end{aligned}$$

The constant has been identified as the function value at time t = 0.

Solution of the Diffusion Equation

• consider a scalar diffusion process

$$\frac{\partial}{\partial t}f = D\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)f = D\Delta f$$

$$F(x, y, 0) := f_0(x, y) \quad \text{boundary condition}$$

Decomposition of the function in spatial Fourier components.

$$\begin{aligned} f(x,y,t) &= \int_{\Omega} \hat{f}(u,v,t) \exp(i2\pi(ux+vy)) du dv \\ \Delta f(x,y,t) &= \int_{\Omega} \hat{f}(u,v,t) (2\pi i)^2 (u^2+v^2) \exp(i2\pi(ux+vy)) du dv \\ &= \mathcal{F}^{-1} \left[-4\pi^2 (u^2+v^2) \hat{f}(u,v,t) \right] \end{aligned}$$

Visual Computing: Joachim M. Buhmann

71/102

Boundary constraints: let $f_0(x,y) = \delta(x)\delta(y)$ (δ -peak at the origin)

$$\hat{f}(u,v,0) = \int_{\Omega} \delta(x)\delta(y) \exp(-i2\pi(ux+vy))dxdy = 1$$

Solution by inverse Fourier transformation:

$$\begin{split} f(x,y,t) &= \int_{\Omega} \hat{f}(u,v,t) \exp(i2\pi(ux+vy)) du \, dv \\ &= \int_{\Omega} \exp\left(-4\pi^2 D(u^2+v^2)t\right) \exp(i2\pi(ux+vy)) du \, dv \\ &= \dots \quad \text{quadratic expansion, Gaussian integration} \\ &= \frac{1}{4\pi Dt} \exp\left(-\frac{x^2+y^2}{4Dt}\right) \\ &= \frac{1}{2\pi\sigma^2} \exp\left(-\frac{|\mathbf{x}|^2}{2\sigma^2}\right) \quad \text{for} \quad \sigma^2 = 2Dt \end{split}$$

Time Evolution of Image Diffusion

Remark: the time evolution of a δ -function under diffusion, also called Green's function, is described by a Gaussian with variance proportional to 2Dt.

Time evolution of an image: decompose the original image

$$f(x, y, 0) = \int_{\Omega} f(\alpha, \beta, 0) \delta(x - \alpha) \delta(y - \beta) d\alpha d\beta$$

Linearity: since the diffusion equation is linear we can superpose time evolutions of δ -functions at positions $(x - \alpha, y - \beta)$.

Maximum-Minimum principle: $\inf_{\mathbb{R}^2} f(x, y, 0) \le f \le \sup_{\mathbb{R}^2} f(x, y, 0)$

Visual Computing: Joachim M. Buhmann

74/102

Note: the linearity guarantees that the diffused image can be written as a convolution of the image with the time evolution of δ -functions.

$$f(x, y, t) = \int_{\Omega} \frac{f(\alpha, \beta, 0)}{4\pi Dt} \exp\left(-\frac{(x-\alpha)^2 + (y-\beta)^2}{4Dt}\right) d\alpha \, d\beta$$
$$= (G_{\sqrt{2Dt}} * f)(x, y, 0)$$

where G_{σ} is a Gaussian with standard deviation σ .

Visual Computing: Joachim M. Buhmann

75/102

Edge Tracking in Scale Space

Visual Computing: Joachim M. Buhmann

Finite Difference Approximation

Diffusion equation: $\partial_t f = \partial_{xx} f + \partial_{yy} f$

Discretization: grid with size h_1, h_2 , time step size τ (in image processing: often $h_1 = h_2 = 1$)

Figure 1: Scale-space behaviour of linear diffusion filtering. (a) TOP LEFT:

Figure 1: Scale-space behaviour of linear diffusion filtering. (a) TOP LEFT: Original image, $\Omega = (0, 236)^2$. (b) TOP RIGHT: t = 12.5. (c) BOTTOM LEFT: t = 50. (d) BOTTOM RIGHT: t = 200. Author: Joachim Weickert

Visual Computing: Joachim M. Buhmann

79/102

Finite difference approximation in (x_i, y_j, t_k) :

$$\begin{array}{lll} \displaystyle \frac{\partial}{\partial t}f &=& \displaystyle \frac{f_{ij}^{k+1}-f_{ij}^k}{\tau}+\mathcal{O}(\tau) \\ \displaystyle \frac{\partial^2}{\partial x^2}f &=& \displaystyle \frac{f_{i+1,j}^k-2f_{ij}^k+f_{i-1,j}^k}{h_1^2}+\mathcal{O}(h_1^2) \end{array}$$

leads to the scheme ($\mathcal{O}(\tau), \mathcal{O}(h_1^2)$ neglected)

$$\frac{f_{ij}^{k+1} - f_{ij}^k}{\tau} = \frac{f_{i+1,j}^k - 2f_{ij}^k + f_{i-1,j}^k}{h_1^2} + \frac{f_{i,j+1}^k - 2f_{ij}^k + f_{i,j-1}^k}{h_2^2}$$

Unknown f_{ij}^{k+1} follows explicitly from unknown values at level k.

Visual Computing: Joachim M. Buhmann

Inhomogeneous Linear Diffusion

Idea: control the diffusivity in a time independent (fixed) but space dependent way, i.e.,

$$D(|\nabla f_0(x,y)|^2) := \frac{1}{\sqrt{1 + |\nabla f_0(x,y)|^2/\lambda}} \qquad (\lambda > 0)$$

Diffusivity is nonlinear but PDE remains linear

$$\partial_t f = \nabla \cdot \left(D\left(|\nabla f_0(x, y)|^2 \right) \nabla f \right)$$

Results: blurring is reduced but the edges are still smoothed after long evolution times.

Visual Computing: Joachim M. Buhmann

82/102

Gauss-Laplace Pyramid Algorithm

Image decomposition in operator formalism:

original image: G^0 Gauss pyramid: $G^i \Big|_{i=1}^n$ Laplace pyramid: $L^i \Big|_{i=1}^{n-1}$

- reduction operator: Rexpansion operator: Esmoothing filter: B^0
 - identity operator: I

Reduction-expansion scheme: The *reduction operator subsamples* the image by a factor of two in each dimension. The *expansion operator replicates* each pixel in each dimension.

Efficiency gain: Often in computer vision most of the computation is invested in for the high resolution scales. If possible subsampling by a *pyramid scheme* and processing on a low resultion scale yields substantial gains in time efficiency.

Gauss-Laplace Pyramid

- **Efficient image representation** by frequency space decomposition: Object information in images is often contained already in the low frequency bands of Fourier space \Rightarrow no need to store all high frequency information!
- **Burt & Adelson (1983):** Decompose an image by successive Gaussian filtering with kernel width spaced in octaves ($\times 2$).

"The Laplacian Pyramid as a compact image code", IEEE-TCOM 31, 532-540

Applications of image pyramids:

- 1. **Image quantization**: the Laplace pyramid coefficients are strongly decorrelated
- 2. **Progressive image transmission**: send first low pass image content and fill in the high frequency information when needed.
- 3. Smart sensing: control selective attention to avoid information overflow

Visual Computing: Joachim M. Buhmann

83/102

Recursive Filtering with Laplace Filter

Construction of a Laplace pyramid L^0, L^1, \dots, L^{n-1} Initialization : $L^0 = G^0 - EG^1$

 $= (I - E(RB)^{0})G^{0}$ $G^{1} = (RB)^{0}G^{0}$ Iteration of level i: $G^{i+1} = (RB)^{i}G^{i}$ $L^{i} = G^{i} - EG^{i+1}$ $= (I - E(RB)^{i})G^{i}$ Reconstruction : $G^{k-1} = L^{k-1} + EG^{k}$

Choose smoothing filter *B* as binomial mask $\frac{1}{16}(1, 4, 6, 4, 1)$

Schematic View of Gauss-Laplace Pyramid Algorithm

Remarks on the Gauss-Laplace Pyramid

Redundancy in 1 dimension: generate $L^0, \ldots, L^{\log_2 N-1}, G^{\log_2 N}$ with approximately 2N coefficients for a 1-dim. image with N pixels since

$$N + \frac{N}{2} + \frac{N}{4} + \dots + 2 + 1 = N \sum_{i=0}^{\log_2 N} \left(\frac{1}{2}\right)^i = 2N(1 - 2^{-\log_2 N - 1}).$$

Gauss/Laplace pyramid redundancy in 2 diminesions: $\leq 33, \overline{3}\%$

$$N + \frac{N}{4} + \frac{N}{16} + \dots + 4 + 1 = N \sum_{i=0}^{\log_2 \sqrt{N}} \left(\frac{1}{4}\right)^i = \frac{4}{3}N(1 - 2^{-\log_2 \sqrt{N} - 1}).$$

Example of a Gauss-Laplace Pyramid

Fourier Space Decomposition by GL-Pyramid

A constant bit budget per Laplace level provides a compact and efficient image code (fixed # of bits per average power).

Wavelet Bases for Image Coding

Wavelets are an orthonormal basis with selfsimilar basis functions.

Wavelets have been suggested with different regularity properties and finite support (Daubechies , Lemarie wavelets).

Self-similarity is very well adapted to power distribution in images (see GL pyramid).

Quadrature mirror filters enable efficient computation (subsampling scheme).

Visual Computing: Joachim M. Buhmann

90/102

Well-posedness and scale-space properties: if the flux function

$$\Phi(s) := D(|s|^2)s$$

is monotonously increasing in *s* then classical mathematical theories such as monotone operators and differential inequalities ensure well-posedness.

Extremum principle: it is equivalent to the noncreation of new level-crossings under certain conditions. \Rightarrow *causality* property guarantees that features can be traced back from coarse to fine scales.

Axiomatization of nonlinear diffusion has been proposed.

Nonlinear Isotropic Diffusion Filtering

Idea: we introduce a diffusivity which depends on the gradient of the time dependent intensity function, i.e., $D = D(|\nabla f|^2)$.

Diffusion across edges is reduced or suppressed.

Nonlinear diffusion equation:

$$\partial_t f = {\rm div}\Big(D(|\nabla f|^2)\nabla f\Big) \quad {\rm on} \quad \Omega\times(0,\infty)$$

with the original image as initial condition $f(\mathbf{x}, 0)$ on Ω and

$$\partial_n f = 0$$
 on $\partial \Omega \times (0,\infty)$

 $\partial_n f$ is the gradient in normal direction.

Visual Computing: Joachim M. Buhmann

91/102

Fig. 1. Diffusion scale-spaces with a convex potential function. TOP: Original image, $\Omega = (0,236)^2$. (A) LEFT COLUMN: Linear diffusion, top to bottom: t = 0, 12.5, 50, 200. (B) MIDDLE COLUMN: Inhomogeneous linear diffusion ($\lambda = 8$), t = 0, 70, 200, 600. (C) RIGHT COLUMN: Nonlinear isotropic diffusion with the Charbonnier diffusivity ($\lambda = 3$), t = 0, 70, 150, 400.

Visual Computing: Joachim M. Buhmann

94/102

Survey of methods:

method	diffusivity $D(s^2)$	potential $\Psi(s)$	$\Psi(s)$ convex for
linear diffusion	1	$s^{2}/2$	all s
Charbonnier	$1/\sqrt{1+s^2/\lambda^2}$	$\sqrt{\lambda^4 + s^2 \lambda^2} - \lambda^2$	all s
Perona-Malik	$1/\left(1+s^2/\lambda^2\right)$	$\lambda^2 \log \left(1 + s^2/\lambda^2\right)/2$	$ s \leq \lambda$

The MATLAB program by F. D'Almeida uses the diffusivity

$$D(s) = \begin{cases} 1 - \exp\left(-\frac{c_m}{(|s|/\lambda)^m}\right), & s > 0\\ 1, & s \le 0 \end{cases}$$

where the constant c_m is chosen such that the flux is monotonously increasing for $s \leq \lambda$ ($c_m = 3.31488$ for m = 8). In general choose $8 \leq m \leq 16$.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3710&objectType=FILE

Diffusion Filtering and Energy Minimization

Consider a potential function $\Psi(|\nabla f|)$ with the property

$$\nabla \Psi(|\nabla f|) = \Phi(\nabla f) = D(|\nabla f|^2) \nabla f,$$

that is, the gradient of the potential is given by the mathematical flux $\Phi(\nabla f)$.

The energy functional

$$E(f):=\int_{\Omega}\Psi(|\nabla f|)dx$$

is minimized by the gradient descent method (variational calculus yields the extremality condition div $\nabla \Psi(|\nabla f|) = \Delta \Psi(|\nabla f|) = 0$)

 $\partial_t f = \mathsf{div}\Big(D(|\nabla f|^2)\nabla f\Big)$

Visual Computing: Joachim M. Buhmann

95/102

Perona-Malik Nonlinear Diffusion

Edge enhancement: Backward diffusion for $f_x > \lambda$ since $\Phi'(f_x) < 0$ (this case defines a classical ill-posed process!)

Contrast parameter: λ is denoted as the contrast parameter since it switches between forward and backward diffusion. \Rightarrow edge smoothing and edge enhancement.

Problems with PM filtering: stair-casing of images

a) original image, b) PM diffusion filtering, c) regularized isotropic nonlinear diffusion

Solution: Convolve the image with a Gaussian of width σ s.t. ∇f is replaced by $\nabla(G_{\sigma} * f) =: \nabla f_{\sigma}; \Rightarrow$ well-posedness.

Visual Computing: Joachim M. Buhmann

98/102

Vector matrix notation:

$$\frac{df}{dt} = A(f) \, f$$

with the matrix elements

$$a_{kl} := \begin{cases} \frac{D_k + D_l}{2h_n^2} & l \in \mathcal{N}_n(k) \\ -\sum_{n=1}^2 \sum_{l \in \mathcal{N}_n(k)} \frac{D_l + D_k}{2h_n^2} & l = k, \\ 0 & \text{else.} \end{cases}$$

Discrete Nonlinear Diffusion

Discretization of $\partial_t f = \partial_x (D(|\nabla f_\sigma|^2) \partial_x f) + \partial_y (D(|\nabla f_\sigma|^2) \partial_y f)$:

$$\begin{aligned} \frac{df_{ij}}{dt} &= \frac{1}{h_1} \left(\frac{D_{i+1,j} + D_{ij}}{2} \frac{f_{i+1,j} - f_{ij}}{h_1} - \frac{D_{ij} + D_{i-1,j}}{2} \frac{f_{ij} - f_{i-1,j}}{h_1} \right) \\ &+ \frac{1}{h_2} \left(\frac{D_{i,j+1} + D_{ij}}{2} \frac{f_{i,j+1} - f_{ij}}{h_2} - \frac{D_{ij} + D_{i,j-1}}{2} \frac{f_{ij} - f_{i,j-1}}{h_2} \right) \end{aligned}$$

Compact notation: (use single index k(i, j) for pixel (i, j))

$$\frac{df_k}{dt} = \sum_{n=1}^2 \sum_{l \in \mathcal{N}_n(k)} \frac{D_l + D_k}{2h_n^2} (f_l - f_k)$$

where $\mathcal{N}_n(k)$ is the set of neighbors in the direction of *n*.

Visual Computing: Joachim M. Buhmann

99/102

Vector-valued Nonlinear Diffusion

Naive idea: run diffusion separately in all (color) channels ⇒ problem: edges locations might differ between channels which causes unpleasant color effects.

NL diffusion of color images with common diffusivity: (Gerig et al. 1992) diffusivity is $D(\sum_{j=1}^{3} |\nabla f_j|^2)$

Medical imaging: vector valued nonlinear diffusion can also be used to smoothen Magnetic Resonance Images.

Visual Computing: Joachim M. Buhmann

102/102