
1

1

MipMap Texturing

2

Outline

• MipMapping
• Creating MipMaps
• Using MipMaps
• Trilinear MipMapping
• Anisotropic MipMapping
• Exercise Demo

3

Goals
• You can explain why it is a good idea to use

mipmaps
• You know how to generate mipmaps in OpenGL
• You know the different filters for mipmap

generation
• You can implement more sophisticated filters

by yourself

4

Without mipmapping:
artifacts/aliasing at details

Solution:
filter details before
rendering

This happens without mipmapping

MipMapping I

2

5

MipMapping II

• Textured objects can be viewed at different
distances from the viewpoint

Problem: Which level of detail (Resolution) should one use for
the texture image?

Too high resolution: Aliasing effects
Too small resolution: Too few details visible

Solution: Use different levels of detail according to the
distance between object and viewpoint
→ mipmaps

6

MipMapping III

• History: 1983 Lance Williams introduced the
word “mipmap” in his paper “Pyramidal
Parametrics”

• mip = “multum in parvo”
(lat.: many things in small place)

• Solves LOD problem by generating a pyramid of
textures
– Highest texture resolution at pyramid level 0
– Halfed Resolution at each subsequent level

7

MipMapping IV

• OpenGL automatically determines the
mipmap level to use based on the projected
size of the object

- needs 1 1/3 times the space

Σ
i = 0

• MipMap pyramid:

= A·
A
4i

4
3

8

Creating MipMaps I

• When creating the mipmap pyramid we
have to compute the smaller levels

ci(x,y) = color of the texture of level i at (x,y)

• Definition:

- this is done by downsampling the
original texture

3

9

1. Nearest Neighbour

ci(x,y) = c0(x·2i,y·2i)

ci(x,y) = ci-1(x·2,y·2)

sampling from the original
texture

sampling from the level
below

Creating MipMaps II

10

2. Boxfilter

ci(x,y) = (ci-1(x·2,y·2) + ci-1(x·2+1,y·2) +
ci-1(x·2,y·2+1) + ci-1(x·2+1,y·2+1))

Creating MipMaps III

1
4

11

3. Gaussian filter

1 2 5 6

1 4 6 4 1
4 1 6 2 4 1 6 4
6 2 4 3 6 2 4 6
4 1 6 2 4 1 6 4
1 4 6 4 1

To avoid aliasing effects a low pass filter (like a
gaussian or sinc filter) is optimal

Unfortunately this is computational expensive

Therefore we discretize the filter into a matrix and
perform a discrete convolution

Filter Matrix:
(Gaussian)

Creating MipMaps IV

12

void gluBuild2DMipMaps();

void glTexImage2D(GL_TEXTURE_2D, GLint level,
GLint components, GLsizei width, GLsizei height,
GLint border, GLenum format, GLenum type, const
GLvoid *pixels);

→ loads texture for the MipMap level
(level 0 = original texture)

→ calls glTexImage2D(...) for each level

• MipMapping in OpenGL:

Creating MipMaps V

4

13

Texture-Lookup I
• Problems when looking up color in the texture

Minification:

- Pixels map to less than one texel

Magnification:

- Pixels map to more than one
texel

Filtering:
Nearest: centre of texel on texture determines color
Bilinear: weighted average of overlapping pixel

14

• Problem with bilinear:

- it is visible where the
mipmap level changes

←

Texture-Lookup II

15

Trilinear Filtering I

• linear filtering between
two mipmap levels

30% 70%

In this example, the color of the pixel would be :
0.3 * (color of level i) + 0.7 * (color of level i-1)

16

Trilinear Filtering II

• Colored mipmaps:

- with bilinear the change of levels is acute
- with trilinear the levels fade in smoothly

5

17

Trilinear Filtering III

void glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,

GLenum filter);

→ filter:
GL_NEAREST
GL_LINEAR
GL_NEAREST_MIPMAP_NEAREST
GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_LINEAR (trilinear)

• MipMap filtering in OpenGL:

filter used to
sample texture

filter used when
combining mipmap
levels

↑ ↑

18

Anisotropic Filtering I
• Trilinear mipmapping

blurs for acute angles

trilinear (also bilinear) filtering
does not take the perspective
into account

19

Anisotropic Filtering II
• Anisotropic filtering looks at the projection

of the pixel onto the texture

k anisotropic means that k samples of the
texture are used to approximate the
projection of the pixel (here k=8) 20

Anisotropic Filtering III

