Poisson Image Editing

Patric Perez, Michel Gangnet, and Andrew Black
(SIGGRAPH 2003)

Seminar Talk by

Tim Weyrich
Overview

• Guided Image Interpolation
• Discretized Solution
• Editing Operations
• Discussion
Interpolation Problem

- f^*: known image values
- f: unknown values over region Ω
- Assuming scalar image values
Simple Interpolation

- Maximize smoothness
 \[\min_f \int_\Omega \| \nabla f \|^2 \]

- Boundary constraints
 \[f|_{\partial\Omega} = f^*|_{\partial\Omega} \]
Simple Interpolation

- Solution: *Laplace Equation* with Dirichlet boundary conditions

\[\nabla^2 f = 0, \quad f|_{\partial \Omega} = f^*|_{\partial \Omega} \]

- Membrane solution
- Unsatisfactory due to over-blurring
Guided Interpolation

- \(\mathbf{v} \): guided field
- \(\mathbf{v} \) may be gradient of a function \(g \)
Guided Interpolation

• Minimize difference of gradient fields

\[\min \int_{\Omega} \| \nabla f - \mathbf{v} \|^2 \]

• Solution: Poisson Equation with Dirichlet boundary conditions

\[\nabla^2 f = \text{div} \mathbf{v}, \quad f|_{\partial\Omega} = f^*|_{\partial\Omega} \]
Discrete Poisson Solver

- Discretize $\min_{f} \int_{\Omega} \| \nabla f - \mathbf{v} \|^2$ directly by

$$\min_{f|_{\Omega}} \sum_{\langle p,q \rangle \cap \Omega \neq 0} (f_p - f_q - v_{pq})^2$$

$$f_p = f_p^*, \ \forall p \in \partial \Omega$$

for neighbors p and q with

$$v_{pq} = \mathbf{v}(\frac{p+q}{2}) \cdot \overrightarrow{pq}$$

\[\text{Diagram showing neighbors and vector } v_{pq}\]
Discrete Poisson Solver

- Minimum satisfies linear system of equations

If neighborhood N_p overlaps boundary:

$$|N_p|f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} \nu_{pq}$$

For interior points:

$$|N_p|f_p - \sum_{q \in N_p} f_q = \sum_{q \in N_p} \nu_{pq}$$
Discrete Poisson Solver

- Linear system of equations
 - sparse (banded)
 - symmetric
 - positive-definite

- Irregular shape of boundary requires general solver, such as
 - Gauss-Seidel iteration
 - Multi-grid

- System can be solved at interactive rates
Seamless Cloning

• Importing Gradients from a Source Image g

$$\mathbf{v} = \nabla g$$

• Discretize

$$\nu_{pq} := g_p - g_q, \quad \forall \langle p, q \rangle$$
Seamless Cloning Results
Mixing Gradients

• Two Variants
 – \(\mathbf{v} \) averaged from source and destination gradients \(\Rightarrow \) transparency
 – Select stronger one from source and destination gradients:

\[
\mathbf{v}(\mathbf{x}) = \begin{cases}
\nabla f^*(\mathbf{x}) & \text{if } |\nabla f^*(\mathbf{x})| > |\nabla g(\mathbf{x})| \\
\nabla g(\mathbf{x}) & \text{otherwise}
\end{cases}
\]

Discretization:

\[
u_{pq} = \begin{cases}
f_p^* - f_q^* & \text{if } |f_p^* - f_q^*| > |g_p - g_q| \\
g_p - g_q & \text{otherwise}
\end{cases}
\]
Mixing Gradients Results

(a) color-based cutout and paste
(b) seamless cloning
(c) seamless cloning and destination averaged
(d) mixed seamless cloning
Mixing Gradients Results

source

destination
Mixing Gradients Results

source/destination
seamless cloning
mixed seamless cloning
Texture Flattening

• Preserve only salient gradients

\[\mathbf{v}(\mathbf{x}) = M(\mathbf{x}) \nabla f^*(\mathbf{x}) \]

with masking function \(M(\mathbf{x}) \) so that

\[\nu_{pq} = \begin{cases}
 f_p - f_q & \text{if } \overline{pq} \text{ crosses an edge} \\
 0 & \text{otherwise}
\end{cases} \]
Texture Flattening
Local Illumination Changes

- Approximate tone mapping transformation after Fattal et al. 2002:

\[\mathbf{v} = \alpha^\beta |\nabla f^*|^{-\beta} \nabla f^* \]

\[\alpha = 0.2 |\nabla|_{\text{avg}} \]

\[\beta = 0.2 \]

- Attenuating large gradients
Local Color Changes

• Mix two differently colored version of original image
 – One provides f^* outside
 – One provides g inside
Local Color Changes
Seamless Tiling

• Select original image as g
• Boundary condition:
 - $f_{\text{north}}^* = f_{\text{south}}^* = 0.5 (g_{\text{north}} + g_{\text{south}})$
 - Similarly for the east and west
Discussion

Pros

• Very general framework
• No parameter tuning required
• Method does not require precise selection
• Versatile method
 – Seamless cloning, mixing gradients
 – Texture flatening
 – Local changes of illumination and color
 – Seamless tiling
Discussion

Cons

- Cloning requires either of the images to be smooth
- No refined selection is returned
- Minimization only adapts low-frequency content
 - Potential color shift / re-coloring difficult to control
 - Dissatisfactory tiling
 - Cloning requires careful placement of prominent features
Outlook

• More image editing operators
 – Combinations (insert while flattening)
 – Other non-linear operations on gradients
 – More than one source images

• Poisson editing of triangle meshes
 – Feature transfer
 – Detail preserving deformations

• Other editing domains possible?
Thanks
Seamless Tiling
Mixing Gradients Results

source/destination

color transfer

monochrome transfer