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Point-Based Computer Graphics

Surfaces from Point Samples
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Motivation

• Many applications need definition of 
surface based on point samples
• Reduction
• Up-sampling
• Interrogation (e.g. ray tracing)

• Desirable surface properties
• Manifold
• Smooth
• Local (efficient computation)
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Overview

• Introduction & Basics
• Fitting Implicit Surfaces
• Projection-based Surfaces
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Introduction & Basics

• Regular/Irregular
• Approximation/Interpolation
• Global/Local
• Standard techniques

• LS, RBF, MLS
• Problems

• Sharp edges, feature size/noise
• Functional/Manifold
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• Regular
• Requires to store only values

• Irregular
• Requires to store locations pi

Regular/Irregular

px py
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Approximation/Interpolation

• Noisy data -> Approximation

• Perfect data -> Interpolation
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Global/Local

• Global approximation

• Local approximation

• Locality comes at the expense of 
smoothness
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Least Squares

• Fits a primitive to the data
• Minimizes squared distances between 

the pi’s and primitive g
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Least Squares - Example

• Primitive is a polynomial

•

• Linear system of equations
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Least Squares - Example

• Resulting system
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Moving Least Squares

• Compute a local LS approximation at t
• Weight data points based on distance 

to t
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Moving Least Squares

• The set

is a smooth curve, iff θ is smooth
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Moving Least Squares

• Typical choices for θ:
•
•

• Note:                           is fixed
• For each t

• Standard weighted LS problem
• Linear iff corresponding LS is linear

( )
xii pt −= θθ

( ) 22 /θ hded −=
( ) rdd −=θ
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Radial Basis Functions

• Represent interpolant as
• Sum of radial functions r
• Centered at the data points pi
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Radial Basis Functions

• Solve

to compute weights wi

• Linear system of equations 
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Radial Basis Functions

• Solvability depends on radial function
• Several choices assure solvability

• (thin plate spline)

• (Gaussian)
• h is a data parameter
• h reflects the feature size or anticipated 

spacing among points

( ) dddr log2=

( ) 22 / hdedr −=
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Typical Problems

• Sharp corners/edges

• Noise vs. feature size
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Functional/Manifold

• Standard techniques are applicable
if data represents a function

• Manifolds are more general
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Implicits

• Each orientable n-manifold can be 
embedded in n+1 – space 

• Idea: Represent n-manifold as zero-
set of a scalar function in n+1 – space 
• Inside:
• On the manifold:
• Outside: 

( ) 0<xf

( ) 0=xf

( ) 0>xf
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Implicits - Illustration

• Image courtesy Greg Turk
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Implicits from point samples

• Function should be 
zero in data points
•

• Use standard 
approximation 
techniques to find f

• Trivial solution:
• Additional constraints 

are needed

( ) 0=ipf

0=f

0
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Implicits from point samples

• Constraints define 
inside and outside

• Simple approach 
(Turk, O’Brien)
• Sprinkle additional 

information manually
• Make additional 

information soft 
constraints
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Implicits from point samples

• Use normal 
information as 
constraint

• Normals could be 
computed from scan

• Or, normals have to be 
estimated
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Estimating normals

• Two problems
• Normal direction and
• Orientation

(Implicits are signed!)
• Normal direction

by fitting a tangent
• LS fit to nearest neighbors
• Weighted LS fit
• MLS fit

n

q
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Estimating normals

• General fitting problem

• Problem is non-linear
because n is constrained
to unit sphere

n
q
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Estimating normals

• The constrained minimization problem

is solved by the eigenvector corresponding 
to the smallest eigenvalue of

∑ −
=

i
ii

n
npq θ,min

2

1

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 






















−−−

−−−

−−−

∑∑∑
∑∑∑
∑∑∑

i
iiz

i
iiz

i
iiz

i
iiy

i
iiy

i
iiy

i
iix

i
iix

i
iix

zyx

zyx

zyx

pqpqpq

pqpqpq

pqpqpq

θθθ

θθθ

θθθ

222

222

222

Point-Based Computer Graphics Marc Alexa 27

Estimating normals

• Consistent orientation
• Problem is NP-hard

• Greedy approach (Hoppe)
• Compute spanning tree 

based on graph of
k-nearest neighbors

• Orient consistently along 
spanning tree
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Computing Implicits

• Given N points and normals
and constraints

• Let 
• An RBF approximation

leads to 2N linear equations in 2N
unknowns (a              matrix)
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Computing Implicits

• Practical problems: N > 10000
• Matrix solution becomes difficult
• Two solutions

• Sparse matrices allow iterative solution
• Smaller number of RBFs
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Computing Implicits

• Sparse matrices

• Needed: 

• Compactly supported RBFs
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Computing Implicits

• Smaller number of RBFs
• Greedy approach (Carr et al.)

• Start with random small subset
• Add RBFs where approximation quality is 

not sufficient
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RBF Implicits - Results

• Images courtesy Greg Turk
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RBF Implicits - Results

• Images courtesy Greg Turk

Point-Based Computer Graphics Marc Alexa 34

Implicits - Conclusions

• Scalar field is underconstrained
• Constraints only define where the field is 

zero, not where it is non-zero

• Signed fields restrict surfaces to be 
unbounded
• All implicit surfaces define solids
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Projection

• Idea: Map space to surface
• Surface is defined as fixpoints of 

mapping
r

r’
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Surface definition

• Projection procedure (Levin)
• Local polyonmial approximation

• Inspired by differential geometry

• “Implicit” surface definition

• Infinitely smooth &
• Manifold surface

r
r’
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Surface Definition

• Constructive definition
• Input point r
• Compute a local

reference plane
Hr=<q,n>

• Compute a local
polynomial over
the plane Gr

• Project point r’=Gr(0)
• Estimate normal

r
Gr

Hr

q

n
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Local Reference Plane

•Find plane
•

•
• h is feature size/

point spacing

• Hr is independent
of r’s distance

• Manifold property

r

Hr

q

n

Weight function 
based on distance to 

q, not r
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Local Reference Plane

•Computing reference plane
• Non-linear optimization problem

•Minimize independent 
variables:

• Over n for fixed distance

• Along n for fixed direction n

• q changes -> the weights change
• Only iterative solutions possible
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Local Reference Plane

•Practical computation
• Minimize over n for fixed q

• Eigenvalue problem

• Translate q so that

• Effectively changes

• Minimize along n for
fixed direction n

• Exploit partial derivative

r
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Projecting the Point

• MLS polyonomial over Hr

•

• LS problem
• r’=Gr(0) 

• Estimate normal

r
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Spatial data structure

• Regular grid based on support of θ
• Each point influences only 8 cells

• Each cell is
an octree
• Distant octree cells

are approximated
by one point in
center of mass

r
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Error bounds

• Paradigm:
• Given surface S

• Point set               
sampled from S

(           ) defines SR

{ }ipP =

Sri ∈
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Error bounds

• Approximation error of SP to S
• MLS error approximating a function f with 

a polynomial g: 
•
• m = degree of polynomial

• SP is approximated by a polynomial in 
each point

•

1+⋅≤− mhMgf
( )( )1+∈ mfOM

1+⋅≤− m
p hMSS
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Error bounds

• Conclusions
• Remark: Curvature is a useful criterion 

only for piecewise linear surfaces
• Generally: Higher order derivatives are 

not accessible
• Quality of representation is mainly 

dictated by h
• Number of points control h
• Increase/decrease number of points to 

adjust the quality of representation
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Conclusions

• Projection-based surface definition
• Surface is smooth and manifold
• Surface may be bounded
• Representation error mainly depends on 

point density
• Adjustable feature size h allows to 

smooth out noise
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