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» Performance of 3D hardware has exploded
(e.g., GeForce4: 136 million vertices per
second)

» Projected triangles are very small (i.e.,
cover only a few pixels)

» Overhead for triangle setup increases
(initialization of texture filtering,
rasterization)

A simpler, more efficient rendering
primitive than triangles?
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Motivation 2

» Modern 3D scanning devices
(e.g., laser range scanners)
acquire huge point clouds

» Generating consistent triangle
meshes is time consuming and
difficult

A rendering primitive for
direct visualization of point
clouds, without the need to

; 2 4 million pts.
generate triangle meshes? [Levoy et al, 2000]
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Points as Rendering —
i cCAB
Primitives -

« Point clouds instead of triangle meshes [Levoy and
Whitted 1985, Grossman and Dally 1998, Pfister et
al. 2000]

triangle mesh (with point cloud
textures)
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Point-Based Surface

Representation ECTE

« Points are samples of the surface
« The point cloud describes:
« 3D geometry of the surface
« Surface reflectance properties (e.g.,
diffuse color, etc.)
« There is no additional information,
such as
« connectivity (i.e., explicit
neighborhood information between
points)

« texture maps, bump maps, etc.
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Surface Elements - Surfels  Ecims

» Each point corresponds to a surface
element, or surfel, describing the surface in

a small neighborhood
« Basic surfels:

BasicSurfel {

sy osition
position; P
color
color;
} x
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Surfels ECE

» How to represent the surface between the
points?

holes between
the points

« Surfels need to interpolate the surface
between the points

» Acertain surface area is associated with
each surfel
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Surfels ECE

« Surfels can be extended by storing additional
attributes

« This allows for higher quality rendering or
advanced shading effects

ExtendedSurfel {
position;

normal
color; position
normal ;
radius;
=te color | radius
} surfel disc
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Surfels ECIE

« Surfels store essential information for
rendering

« Surfels are primarily designed as a
point rendering primitive

» They do not provide a mathematically
smooth surface definition (see [Alexa
2001], point set surfaces)
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Model Acquisition ECTE

« 3D scanning of physical objects
« See Pfister, acquisition
« Direct rendering of acquired point clouds
« No mesh reconstruction necessary

e

[Matusik et al. 2002]
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Model Acquisition ECIE

« Sampling synthetic objects
« Efficient rendering of complex models

« Dynamic sampling of procedural objects
and animated scenes (see Stamminger,
dynamic sampling)

§
[Zwicker et al. 2001] [Stamminger et al. 2001]
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Model Acquisition ECIE

» Processing and editing of point-sampled
geometry

~

spectral processing point-based surface editing
[Pauly, Gross 2002] [Zwicker et al. 2002]
(see Gross, spectral processing) (see Pauly, Pointshop3D)
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Point Rendering Pipeline ¢

Point Frame-
Cloud buffer

Forward Filtering
Warping and Shading

gy EE |y Reconstruction

« Simple, pure forward mapping pipeline

« Surfels carry all information through the pipeline
(,,surfel stream®)

« No texture look-ups
« Framebuffer stores RGB, alpha, and Z
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Point Rendering Pipeline ¢

Forward Filtering
Warping and Shading

g EE |y Reconstruction

« Perspective projection of each point in
the point cloud

 Analogous to projection of triangle
vertices
» homogeneous matrix-vector product
« perspective division
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Point Rendering Pipeline zcims

Forward Filtering

S Image
Warping and Shading = Visibility e

Reconstruction

 Per-point shading

» Conventional models for shading (Phong,
Torrance-Sparrow, reflections, etc.)

» High quality antialiasing is an advanced
topic discussed later in the course
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Point Rendering Pipeline zcims

Forward Filtering
Warping and Shading

Image

I Y Reconstruction

« Visibility and image reconstruction is
performed simultaneously

« Discard points that are occluded from the
current viewpoint

» Reconstruct continuous surfaces from
projected points
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Overview EC!
Forward Filtering e Image
Warping and Shading gy EELE Reconstruction

2. 1.
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Visibility and Image

. jﬁﬂrrﬁ
Reconstruction EC
without visibility and with visibility and
image reconstruction image reconstruction
-
\)/

|_—foreground point

{ — occluded background point

— surface discontinuity
("hole”)
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Image Reconstruction — =cim

« Goal: avoid holes

« Use surfel disc radius r to cover
surface completely
3D object space

Quad Rendering —
Primitive ECH

« Draw a colored quad centered at the projected
point
« The quad side length is h, where h=2*r*s

The scaling factor s given by perspective
projection and viewport transformation

+ Hardware implementagiQp; QrenGL GL_POINTS

.

normal T T
colored qua |
surfel disc ::/F .
projected point T
radius r
Y,
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Projected Disc Rendering . J—
s ees =G’ = gnp
Primitive ECTE Comparison =C

o Project surfel discs from object to screen space
« Projecting discs results in ellipses in screen space

« Ellipses adapt to the surface orientation
screen space obct space

normal

surfel disc

projected surfel disc
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» Quad primitive
« Low image quality (primitives do not adapt to
surface orientation)
« Efficient rendering
« Supported by conventional 3D accelerator
hardware (OpenGL GL_POINTS)
» Projected disc primitive
« Higher image quality (primitives adapt to surface
orientation)
« Not directly supported by graphics hardware
« Higher computational cost
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Visibility: Z-Buffering
» No blending of rendering primitives

framebuffer

o o pbel
Z4 I [
= [
21 >7; i 11
z— [}
=
Y,
RREEE
z T
I
X
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Splatting

» A splat primitive consists of a colored point
primitive and an alpha mask

X X

X
colored point alpha mask splat primitive
primitive ¢ w(x,y) c *w(x,y)
(often a 2D

Gauss function)
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Splatting

« The final color c(x,y) is computed by additive
alpha blending, i.e., by computing the weighted
sum

color of splat i  alpha of splat i at position (x,y)

zjci{vi (x,y)
D wixy)

» Normalization is necessary, because the weights do
not sum up to one with irregular point distributions

> ow(xy) =l
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c(x,y)=

Splatting

without normalization with normalization

varying brightness no artifacts
because of irregular
point distribution
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Splatting

« Extended z-buffering

surface 1 surface 2

surfel disc
z

z-buffer pixel

z-threshold | discard splats
accumulate
splats
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Extended Z-Buffering

DepthTest (x,y) {
if (abs(splat z - z(x,y)) < threshold) {
c(x,y) = c(x,y) + splat color

w(x,y) = w(x,y) + splat w(x,y)

-

else if (splat z < z(x,y)) {
z(x,y) = splat z
c(x,y) = splat color

w(x,y) = splat w(x,y)
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Splatting Comparison  gcims

elliptical circular splats surface

lat ith min. radi latti
minif. splats with min. radius  splatting

T

magnif. 128 x 192 128 x 192 128 x 192
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High Quality Splatting  =cim

« High quality splatting requires careful
analysis of aliasing issues
» Review of signal processing theory
« Application to point rendering
« Surface splatting [Zwicker et al. 2001]

Point-Based Computer Graphics Matthias Zwicker 32

Aliasing in Computer
Graphics
« Aliasing = Sampling of continuous functions
below the Nyquist frequency
« To avoid aliasing, sampling rate must be twice as
high as the maximum frequency in the signal
 Aliasing effects:
« Loss of detail
« Moire patterns, jagged edges
« Disintegration of objects or patterns
« Aliasing in Computer Graphics
« Texture Mapping
« Scan conversion of geometry

ECE

Aliasing in Computer
Graphics

« Aliasing: high frequencies in the input signal
appear as low frequencies in the
reconstructed signal
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Occurrence of Aliasing =G Aliasing-Free Reconstruction  Ecims

Spatial Domain Frequency Domain  Spatial Domain Frequency Domain
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Spatial Domain Frequency Domain Spatial Domain Frequency Domain
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Antialiasing

« Prefiltering
« Band-limit the continuous signal before
sampling
« Eliminates all aliasing (with an ideal low-pass
filter)
« Closed form solution not available in general

» Supersampling
 Raise sampling rate
» Reduces, but does not eliminate all aliasing
artifacts (in practice, many signals have infinite
frequencies)
« Simple implementation (hardware)
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Point-Based Computer Graphics

Resampling

discrete input signal
£(u)

discrete output signal
80

u
T reconstructed input T warped input T continuous output
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Resampling Filters

Object Space

reconstructed input
reconstruction kernels

position

irregular spacing
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Resampling Filters

3 Object Space 4 Screen Space

[}
a [ m 2
5 2 . < B
N \ 3
~N Screen Space Screen Space <

3. Filter
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Resampling Filters

3 Object Space 4 Screen Space

/ s7m of resampling filters
N T I ...... T .......... o
f= [ T e [=%
g ! — ) o E
; 4 > ]
b 3 vy
~ Screen Space Screen Space .
<

warped reconstruction
kernel resampling filters
L
N >

low-pass filter convolution .
P 3. Filter
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Resampling

« Resampling in the context of surface
rendering
« Discrete input function = surface texture
(discrete 2D function)
» Warping = projecting surfaces to the
image plane (2D to 2D projective
mapping)
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2D Reconstruction Kernels =GB

=2
\ -

« Warping a 2D reconstruction kernel is equivalent to
projecting a surfel disc with alpha mask

screen space object space

normal

surfel disc with
alpha mask =

— reconstruction
 ox % ox « %
N kernel
A 4

warped reconstruction kernel
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Resampling Filters =cE

\ )

» A resampling filter is a convolution of a
warped reconstruction filter and a low-pass
filter

screen space “no information falls
pixel grid inbetween the pixel

rO-C

warped low-pass filter resampling filter
reconstruction (determined by ("blurred reconstruction
kernel pixel grid) kernel”)
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Mathematical Formulation

c(x,y)=Y. c,r(m” <x,y)>®%‘z(x,y)

pixel color warping function low pass filter

reconstruction kernel

reconstruction kernel color
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Gaussian Resampling Filters  =cimm

» Gaussians are closed under linear
warping and convolution

« With Gaussian reconstruction kernels
and low-pass filters, the resampling
filter is a Gaussian, too

« Efficient rendering algorithms

(surface splatting [Zwicker et al.
2001])
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Mathematical Formulation Mathematical Formulation =CIE

c(x,y)= ) e (m™ (x, ) ®h(x, y)

Gaussian Gaussian
reconstruction kernel low-pass filter

screen space screen space
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c(x,y)= ) e (m™ (x, ) ®h(x, )

=266 (x,y)

Gaussian resampling filter
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Algorithm g
for each point P {

project P to screen space;

shade P;

determine resampling kernel G;

splat G;

Properties of 2D Resampling
Filters

warped recon-  low-pass resampling minification
struction kernel filter filter
® M — N
AN G

’ o @ D = LD
for each pixel { =
normalize;
} T @ D = (1D
N N
magnification
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. = Surface Splattin =
Hardware Implementation ECZAE P s ECZAE

» Based on the object space formulation of
EWA filtering

» Implemented using textured triangles

« All calculations are performed in the
programmable hardware (extensive use of
vertex shaders)

» Presented at EG 2002 ([Ren et al. 2002])
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Performance

» Software implementation
« 500 000 splats/sec on 866 MHz PIII
« 1 000 000 splats/sec on 2 GHz P4

» Hardware implementation [Ren et al. 2002]
« Uses texture mapping and vertex shaders
« 3 000 000 splats/sec on GeForce4 Ti 4400
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Conclusions

Points are an efficient rendering primitive for highly complex
surfaces
Points allow the direct visualization of real world data
acquired with 3D scanning devices
High performance, low quality point rendering is supported
by 3D hardware (tens of millions points per second)
High quality point rendering with anisotropic texture filtering
is available

« 3 million points per second with hardware support

« 1 million points per second in software
Antialiasing technique has been extended to volume
rendering
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Applications

Direct visualization of point clouds

Real-time 3D reconstruction and rendering
for virtual reality applications

Hybrid point and polygon rendering systems
Rendering animated scenes
Interactive display of huge meshes

On the fly sampling and rendering of
procedural objects
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Future Work

» Dedicated rendering hardware

« Efficient approximations of exact EWA
splatting

» Rendering architecture for on the fly
sampling and rendering
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