eCAR

Point-Based Rendering

Matthias Zwicker
Computer Graphics Lab

Point-Based Rendering &cims

« Introduction and motivation
« Surface elements

» Rendering

« Antialiasing

» Hardware Acceleration

» Conclusions

ETH Zirich
Point-Based Computer Graphics Matthias Zwicker 1 Point-Based Computer Graphics Matthias Zwicker 2
0 . =, : . =,
Motivation 1 cm Motivation 1 ECANE

Nvidia GeForce4
2002

Point-Based Computer Graphics Matthias Zwicker 3

» Performance of 3D hardware has exploded
(e.g., GeForce4: 136 million vertices per
second)

» Projected triangles are very small (i.e.,
cover only a few pixels)

» Overhead for triangle setup increases
(initialization of texture filtering,
rasterization)

A simpler, more efficient rendering
primitive than triangles?

Point-Based Computer Graphics Matthias Zwicker 4

Motivation 2

» Modern 3D scanning devices
(e.g., laser range scanners)
acquire huge point clouds

» Generating consistent triangle
meshes is time consuming and
difficult

A rendering primitive for
direct visualization of point
clouds, without the need to

; 2 4 million pts.
generate triangle meshes? [Levoy et al, 2000]

Point-Based Computer Graphics Matthias Zwicker 5

Points as Rendering —
i cCAB
Primitives -

« Point clouds instead of triangle meshes [Levoy and
Whitted 1985, Grossman and Dally 1998, Pfister et
al. 2000]

triangle mesh (with point cloud
textures)

Point-Based Computer Graphics Matthias Zwicker 6

Point-Based Surface

Representation ECTE

« Points are samples of the surface
« The point cloud describes:
« 3D geometry of the surface
« Surface reflectance properties (e.g.,
diffuse color, etc.)
« There is no additional information,
such as
« connectivity (i.e., explicit
neighborhood information between
points)

« texture maps, bump maps, etc.

Point-Based Computer Graphics Matthias Zwicker 7

Surface Elements - Surfels Ecims

» Each point corresponds to a surface
element, or surfel, describing the surface in

a small neighborhood
« Basic surfels:

BasicSurfel {

sy osition
position; P
color
color;
} x
Point-Based Computer Graphics Matthias Zwicker 8

Surfels ECE

» How to represent the surface between the
points?

holes between
the points

« Surfels need to interpolate the surface
between the points

» Acertain surface area is associated with
each surfel

Point-Based Computer Graphics Matthias Zwicker 9

Surfels ECE

« Surfels can be extended by storing additional
attributes

« This allows for higher quality rendering or
advanced shading effects

ExtendedSurfel {
position;

normal
color; position
normal ;
radius;
=te color | radius
} surfel disc
Point-Based Computer Graphics Matthias Zwicker 10

Surfels ECIE

« Surfels store essential information for
rendering

« Surfels are primarily designed as a
point rendering primitive

» They do not provide a mathematically
smooth surface definition (see [Alexa
2001], point set surfaces)

Point-Based Computer Graphics Matthias Zwicker 1

Model Acquisition ECTE

« 3D scanning of physical objects
« See Pfister, acquisition
« Direct rendering of acquired point clouds
« No mesh reconstruction necessary

e

[Matusik et al. 2002]

Point-Based Computer Graphics Matthias Zwicker 12

Model Acquisition ECIE

« Sampling synthetic objects
« Efficient rendering of complex models

« Dynamic sampling of procedural objects
and animated scenes (see Stamminger,
dynamic sampling)

§
[Zwicker et al. 2001] [Stamminger et al. 2001]
Point-Based Computer Graphics Matthias Zwicker 13

Model Acquisition ECIE

» Processing and editing of point-sampled
geometry

~

spectral processing point-based surface editing
[Pauly, Gross 2002] [Zwicker et al. 2002]
(see Gross, spectral processing) (see Pauly, Pointshop3D)
Point-Based Computer Graphics Matthias Zwicker 14

Point Rendering Pipeline ¢

Point Frame-
Cloud buffer

Forward Filtering
Warping and Shading

gy EE |y Reconstruction

« Simple, pure forward mapping pipeline

« Surfels carry all information through the pipeline
(,,surfel stream®)

« No texture look-ups
« Framebuffer stores RGB, alpha, and Z

Point-Based Computer Graphics Matthias Zwicker 15

Point Rendering Pipeline ¢

Forward Filtering
Warping and Shading

g EE |y Reconstruction

« Perspective projection of each point in
the point cloud

 Analogous to projection of triangle
vertices
» homogeneous matrix-vector product
« perspective division

Point-Based Computer Graphics Matthias Zwicker 16

Point Rendering Pipeline zcims

Forward Filtering

S Image
Warping and Shading = Visibility e

Reconstruction

 Per-point shading

» Conventional models for shading (Phong,
Torrance-Sparrow, reflections, etc.)

» High quality antialiasing is an advanced
topic discussed later in the course

Point-Based Computer Graphics Matthias Zwicker 17

Point Rendering Pipeline zcims

Forward Filtering
Warping and Shading

Image

I Y Reconstruction

« Visibility and image reconstruction is
performed simultaneously

« Discard points that are occluded from the
current viewpoint

» Reconstruct continuous surfaces from
projected points

Point-Based Computer Graphics Matthias Zwicker 18

Overview EC!
Forward Filtering e Image
Warping and Shading gy EELE Reconstruction

2. 1.
Point-Based Computer Graphics Matthias Zwicker 19

Visibility and Image

. jﬁﬂrrﬁ
Reconstruction EC
without visibility and with visibility and
image reconstruction image reconstruction
-
\)/

|_—foreground point

{ — occluded background point

— surface discontinuity
("hole”)

Point-Based Computer Graphics Matthias Zwicker 20

Image Reconstruction — =cim

« Goal: avoid holes

« Use surfel disc radius r to cover
surface completely
3D object space

Quad Rendering —
Primitive ECH

« Draw a colored quad centered at the projected
point
« The quad side length is h, where h=2*r*s

The scaling factor s given by perspective
projection and viewport transformation

+ Hardware implementagiQp; QrenGL GL_POINTS

.

normal T T
colored qua |
surfel disc ::/F .
projected point T
radius r
Y,
Point-Based Computer Graphics Matthias Zwicker 21 Point-Based Computer Graphics X Matthias Zwicker 22
Projected Disc Rendering . J—
s ees =G’ = gnp
Primitive ECTE Comparison =C

o Project surfel discs from object to screen space
« Projecting discs results in ellipses in screen space

« Ellipses adapt to the surface orientation
screen space obct space

normal

surfel disc

projected surfel disc

Point-Based Computer Graphics Matthias Zwicker 23

» Quad primitive
« Low image quality (primitives do not adapt to
surface orientation)
« Efficient rendering
« Supported by conventional 3D accelerator
hardware (OpenGL GL_POINTS)
» Projected disc primitive
« Higher image quality (primitives adapt to surface
orientation)
« Not directly supported by graphics hardware
« Higher computational cost

Point-Based Computer Graphics Matthias Zwicker 2

Visibility: Z-Buffering
» No blending of rendering primitives

framebuffer

o o pbel
Z4 I [
= [
21 >7; i 11
z— [}
=
Y,
RREEE
z T
I
X
Point-Based Computer Graphics Matthias Zwicker 25

Splatting

» A splat primitive consists of a colored point
primitive and an alpha mask

X X

X
colored point alpha mask splat primitive
primitive ¢ w(x,y) c *w(x,y)
(often a 2D

Gauss function)

Point-Based Computer Graphics Matthias Zwicker 26

Splatting

« The final color c(x,y) is computed by additive
alpha blending, i.e., by computing the weighted
sum

color of splat i alpha of splat i at position (x,y)

zjci{vi (x,y)
D wixy)

» Normalization is necessary, because the weights do
not sum up to one with irregular point distributions

> ow(xy) =l

Point-Based Computer Graphics Matthias Zwicker 27

c(x,y)=

Splatting

without normalization with normalization

varying brightness no artifacts
because of irregular
point distribution

Point-Based Computer Graphics Matthias Zwicker 28

Splatting

« Extended z-buffering

surface 1 surface 2

surfel disc
z

z-buffer pixel

z-threshold | discard splats
accumulate
splats

Point-Based Computer Graphics Matthias Zwicker 29

Extended Z-Buffering

DepthTest (x,y) {
if (abs(splat z - z(x,y)) < threshold) {
c(x,y) = c(x,y) + splat color

w(x,y) = w(x,y) + splat w(x,y)

-

else if (splat z < z(x,y)) {
z(x,y) = splat z
c(x,y) = splat color

w(x,y) = splat w(x,y)

Point-Based Computer Graphics Matthias Zwicker 30

Splatting Comparison gcims

elliptical circular splats surface

lat ith min. radi latti
minif. splats with min. radius splatting

T

magnif. 128 x 192 128 x 192 128 x 192
Point-Based Computer Graphics Matthias Zwicker 31

High Quality Splatting =cim

« High quality splatting requires careful
analysis of aliasing issues
» Review of signal processing theory
« Application to point rendering
« Surface splatting [Zwicker et al. 2001]

Point-Based Computer Graphics Matthias Zwicker 32

Aliasing in Computer
Graphics
« Aliasing = Sampling of continuous functions
below the Nyquist frequency
« To avoid aliasing, sampling rate must be twice as
high as the maximum frequency in the signal
 Aliasing effects:
« Loss of detail
« Moire patterns, jagged edges
« Disintegration of objects or patterns
« Aliasing in Computer Graphics
« Texture Mapping
« Scan conversion of geometry

ECE

Aliasing in Computer
Graphics

« Aliasing: high frequencies in the input signal
appear as low frequencies in the
reconstructed signal

Point-Based Computer Graphics Matthias Zwicker 33 Point-Based Computer Graphics Matthias Zwicker 34
Occurrence of Aliasing =G Aliasing-Free Reconstruction Ecims

Spatial Domain Frequency Domain Spatial Domain Frequency Domain
[] -

.00 @ sinte) B

Ll

et X

Point-Based Computer Graphics Matthias Zwicker 35

Spatial Domain Frequency Domain Spatial Domain Frequency Domain
[]]

-8

Err ecomseion e

5 \/

-1 UL iow- f

Fr] R
Nyl =sampling
ey rancy

bl

Point-Based Computer Graphics Matthias Zwicker 36

o S (o

Antialiasing

« Prefiltering
« Band-limit the continuous signal before
sampling
« Eliminates all aliasing (with an ideal low-pass
filter)
« Closed form solution not available in general

» Supersampling
 Raise sampling rate
» Reduces, but does not eliminate all aliasing
artifacts (in practice, many signals have infinite
frequencies)
« Simple implementation (hardware)
Matthias Zwicker 37

Point-Based Computer Graphics

Resampling

discrete input signal
£(u)

discrete output signal
80

u
T reconstructed input T warped input T continuous output

Point-Based Computer Graphics Matthias Zwicker 38

Resampling Filters

Object Space

reconstructed input
reconstruction kernels

position

irregular spacing

Point-Based Computer Graphics Matthias Zwicker 39

Resampling Filters

3 Object Space 4 Screen Space

[}
a [m 2
5 2 . < B
N \ 3
~N Screen Space Screen Space <

3. Filter
Matthias Zwicker 40

Point-Based Computer Graphics

Resampling Filters

3 Object Space 4 Screen Space

/ s7m of resampling filters
N T I T o
f= [T e [=%
g ! —) o E
; 4 >]
b 3 vy
~ Screen Space Screen Space .
<

warped reconstruction
kernel resampling filters
L
N >

low-pass filter convolution .
P 3. Filter

Point-Based Computer Graphics Matthias Zwicker 41

Resampling

« Resampling in the context of surface
rendering
« Discrete input function = surface texture
(discrete 2D function)
» Warping = projecting surfaces to the
image plane (2D to 2D projective
mapping)

Point-Based Computer Graphics Matthias Zwicker 2

2D Reconstruction Kernels =GB

=2
\ -

« Warping a 2D reconstruction kernel is equivalent to
projecting a surfel disc with alpha mask

screen space object space

normal

surfel disc with
alpha mask =

— reconstruction
 ox % ox « %
N kernel
A 4

warped reconstruction kernel

Point-Based Computer Graphics Matthias Zwicker 43

Resampling Filters =cE

\)

» A resampling filter is a convolution of a
warped reconstruction filter and a low-pass
filter

screen space “no information falls
pixel grid inbetween the pixel

rO-C

warped low-pass filter resampling filter
reconstruction (determined by ("blurred reconstruction
kernel pixel grid) kernel”)

Point-Based Computer Graphics Matthias Zwicker 44

Mathematical Formulation

c(x,y)=Y. c,r(m” <x,y)>®%‘z(x,y)

pixel color warping function low pass filter

reconstruction kernel

reconstruction kernel color

Point-Based Computer Graphics

Gaussian Resampling Filters =cimm

» Gaussians are closed under linear
warping and convolution

« With Gaussian reconstruction kernels
and low-pass filters, the resampling
filter is a Gaussian, too

« Efficient rendering algorithms

(surface splatting [Zwicker et al.
2001])

Matthias Zwicker 45 Point-Based Computer Graphics Matthias Zwicker 46
Mathematical Formulation Mathematical Formulation =CIE

c(x,y)=) e (m™ (x,) ®h(x, y)

Gaussian Gaussian
reconstruction kernel low-pass filter

screen space screen space

Point-Based Computer Graphics Matthias Zwicker 47

c(x,y)=) e (m™ (x,) ®h(x,)

=266 (x,y)

Gaussian resampling filter

Point-Based Computer Graphics Matthias Zwicker 48

Algorithm g
for each point P {

project P to screen space;

shade P;

determine resampling kernel G;

splat G;

Properties of 2D Resampling
Filters

warped recon- low-pass resampling minification
struction kernel filter filter
® M — N
AN G

’ o @ D = LD
for each pixel { =
normalize;
} T @ D = (1D
N N
magnification
Point-Based Computer Graphics Matthias Zwicker 49 Point-Based Computer Graphics Matthias Zwicker 50
. = Surface Splattin =
Hardware Implementation ECZAE P s ECZAE

» Based on the object space formulation of
EWA filtering

» Implemented using textured triangles

« All calculations are performed in the
programmable hardware (extensive use of
vertex shaders)

» Presented at EG 2002 ([Ren et al. 2002])

Point-Based Computer Graphics Matthias Zwicker 51

Performance

» Software implementation
« 500 000 splats/sec on 866 MHz PIII
« 1 000 000 splats/sec on 2 GHz P4

» Hardware implementation [Ren et al. 2002]
« Uses texture mapping and vertex shaders
« 3 000 000 splats/sec on GeForce4 Ti 4400

Point-Based Computer Graphics Matthias Zwicker 52

Conclusions

Points are an efficient rendering primitive for highly complex
surfaces
Points allow the direct visualization of real world data
acquired with 3D scanning devices
High performance, low quality point rendering is supported
by 3D hardware (tens of millions points per second)
High quality point rendering with anisotropic texture filtering
is available

« 3 million points per second with hardware support

« 1 million points per second in software
Antialiasing technique has been extended to volume
rendering

Point-Based Computer Graphics Matthias Zwicker 53

Applications

Direct visualization of point clouds

Real-time 3D reconstruction and rendering
for virtual reality applications

Hybrid point and polygon rendering systems
Rendering animated scenes
Interactive display of huge meshes

On the fly sampling and rendering of
procedural objects

Point-Based Computer Graphics Matthias Zwicker 54

Future Work

» Dedicated rendering hardware

« Efficient approximations of exact EWA
splatting

» Rendering architecture for on the fly
sampling and rendering

Point-Based Computer Graphics Matthias Zwicker 55

References

[Levoy and Whitted 1985] The use of points as a display primitive,
technical report, University of North Carolina at Chapel Hill, 1985
[Heckbert 1986] Fundamentals of texture mapping and image warping,
Master's Thesis, 1986

[Grossman and Dally 1998] Point sample rendering, Eurographics
workshop on rendering, 1998

[Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000
[Rusinkiewicz et al. 2000] Qsplat, SIGGRAPH 2000

[Pfister et al. 2000] Surfels: Surface elements as rendering primitives,
SIGGRAPH 2000

[Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001

[Zwicker et al. 2002] EWA Splatting, to appear, IEEE TVCG 2002

[Ren et al. 2002] Object space EWA splatting: A hardware accelerated
approach to high quality point rendering, Eurographics 2002

Point-Based Computer Graphics Matthias Zwicker 56

10

