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The Goal: To Capture Reality

• Fully-automated 3D model creation of real 
objects. 

• Faithful representation of appearance for 
these objects.
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Image-Based 3D Photography

• An image-based 3D scanning system.
• Handles fuzzy, refractive, transparent objects.
• Robust, automatic
• Point-sampled geometry based on the visual hull.
• Objects can be rendered in novel environments. 
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Previous Work

• Active and passive 3D scanners
• Work best for diffuse materials.
• Fuzzy, transparent, and refractive objects are difficult.

• BRDF estimation, inverse rendering
• Image based modeling and rendering

• Reflectance fields [Debevec et al. 00]

• Light Stage system to capture reflectance fields
• Fixed viewpoint, no geometry

• Environment matting [Zongker et al. 99, Chuang et al. 00]

• Capture reflections and refractions
• Fixed viewpoint, no geometry
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The System

Light Array

Cameras

Rotating Platform
Multi-Color
Monitors
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Acquisition

• For each viewpoint ( 6 cameras x 72 
positions )
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different 

lighting 
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]
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Geometry – Opacity Hull

• Visual hull augmented with view-dependent 
opacity.
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Approximate Geometry

• The approximate visual hull is augmented by 
radiance data to render concavities, 
reflections, and transparency.
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Geometry Example
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Surface Light Fields

• A surface light field is a function that 
assigns a color to each ray originating on a 
surface. [Wood et al., 2000]
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Shading Algorithm

• A view-dependent strategy.
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Color Blending

• Blend colors based on angle between virtual 
camera and stored colors.

• Unstructured Lumigraph Rendering
[Buehler et al., SIGGRAPH 2001]

• View-Dependent Texture Mapping
[Debevec, EGRW 98]
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Point-Based Rendering

• Point-based rendering using LDC tree, 
visibility splatting, and view-dependent 
shading.
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Geometry – Opacity Hull

• Store the opacity of each observation at 
each point on the visual hull [Matusik et al. 
SIG2002].
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Geometry – Opacity Hull

• Assign view-dependent opacity to each ray 
originating on a point of the visual hull. 

Red = invisible
White = opaque
Black = transparent
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Results

• Point-based rendering using EWA splatting, 
A-buffer blending, and edge antialiasing.
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Opacity Hull – Discussion

• View dependent opacity vs. geometry 
trade-off.
• Similar to radiance vs. geometry trade-off.

• Sometimes acquiring the geometry is not 
possible (e.g. resolution of the acquisition 
device is not adequate).

• Sometimes representing true geometry 
would be very inefficient (e.g. hair, trees).

• Opacity hull stores the “macro” effect.
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Point-Based Models

• No need to establish topology or 
connectivity.

• No need for a consistent surface 
parameterization for texture mapping.

• Represent organic models (feather, tree) 
much more readily than polygon models.

• Easy to represent view-dependent opacity 
and radiance per surface point. 
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Light Transport Model

• Assume illumination originates from 
infinity.

• The light arriving at a camera pixel can be 
described as:

C(x,y) - the pixel value
E - the environment
W - the reflectance field
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Surface Reflectance Fields

• 6D function:ωi

ωr

P

),;,;,(),,( rriirrri vuWPW ΦΦ= θθωω

ωi



Point-Based Computer Graphics Hanspeter Pfister, MERL 25

Reflectance Functions

• For each viewpoint, 4D function:
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Reflectance Field Acquisition

• We separate the hemisphere into high 
resolution Ωh and low resolution Ωl  [Matusik
et al., EGRW2002].
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Acquisition

• For each viewpoint ( 6 cameras x 72 
positions )
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different 

lighting 
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Low resolution

High resolution
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Low-Resolution Reflectance Field

• Wl sampled by taking pictures with each light 
turned on at a time [Debevec et al 00].
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• Subdivide images into 8 x 8 pixel blocks.
• Keep blocks containing the object (avg. 

compression 1:7)
• PCA compression (avg. compression 1:10)

Compression

PCA

a0 a1 a2 a3 a4 a5
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High-Resolution Reflectance Field

• Use techniques of environment matting 
[Chuang et al., SIGGRAPH 00].

• Approximate Wh by a sum of up to two 
Gaussians:
• Reflective G1.
• Refractive G2.
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Surface Reflectance Fields

• Work without accurate geometry.
• Surface normals are not necessary.
• Capture more than reflectance:

• Inter-reflections
• Subsurface scattering
• Refraction
• Dispersion
• Non-uniform material variations

• Simplified version of the BSSRDF [Debevec et 
al., 00].
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Rendering

• Input: Opacity hull, reflectance data, new 
environment

• Create radiance images from environment 
and low-resolution reflectance field.

• Reparameterize environment mattes.
• Interpolate data to new viewpoint.
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1st Step: Relighting Ωl

• Compute radiance image for each viewpoint.

The sum is the radiance image of this 
viewpoint in this environment.

x
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2nd Step: Reproject Ωh

• Project environment mattes onto the new 
environment.
• Environment mattes acquired was 

parameterized on plane T (the plasma display).
• We need to project the Gaussians to the new 

environment map, producing new Gaussians. 

Ω h
T
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3rd Step: Interpolation

• From new viewpoint, for each surface point, find 
four nearest acquired viewpoints.
• Store visibility vector per surface point.

• Interpolate using unstructured lumigraph 
interpolation [Buehler et al., SIGGRAPH 01] or view-
dependent texture mapping [Debevec 96].
• Opacity.
• Contribution from low-res reflectance field (in the form of 

radiance images).
• Contribution from high-res reflectance field.
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3rd Step: Interpolation

• For low-res reflectance field, we interpolate 
the RGB color from the radiance images.
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For high-resolution 
reflectance field:

Interpolate direction of 
reflection/refraction.
Interpolate other 
parameters of the 
Gaussians.
Convolve with the 
environment.
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Results

• Performance for 6x72 = 432 viewpoints
• 337,824 images taken in total !!

• Acquisition (47 hours)
• Alpha mattes – 1 hour
• Environment mattes – 18 hours
• Reflectance images – 28 hours

• Processing
• Opacity hull ~ 30 minutes
• PCA Compression ~ 20 hours (MATLAB, unoptimized)

• Rendering ~ 5 minutes per frame
• Size

• Opacity hull ~ 30 - 50 MB
• Environment mattes ~ 0.5 - 2 GB
• Reflectance images ~ Raw 370 GB / Compressed 2 - 4 GB
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Results
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Results
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Results

hΩHigh-resolution lΩLow-resolution Combined
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Results
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Results – Ωh
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Results – Ωl
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Results – Combined
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Results
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Results
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Conclusions

• A fully automatic system that is able to capture 
and render any type of object.

• Opacity hulls combined with lightfields / surface 
reflectance fields provide realistic 3D graphics 
models.

• Point-based rendering offers easy surface 
parameterization of acquired models.

• Separation of surface reflectance fields into high-
and low-resolution areas is practical.

• New rendering algorithm for environment matte 
interpolation.
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Future Directions

• Use more than 2 Gaussians for the 
environment mattes.

• Better compression.
• Real-time rendering.
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