Acquisition of Point-Sampled
Geometry and Appearance
Hanspeter Pfister, MERL
pfister@merl.com
Wojciech Matusik, MIT
Addy Ngan, MIT
Paul Beardsley, MERL
Remo Ziegler, MERL
Leonard McMillan, MIT

The Goal: To Capture Reality

- Fully-automated 3D model creation of real objects.
- Faithful representation of appearance for

Image-Based 3D Photography

- An image-based 3D scanning system.
- Handles fuzzy, refractive, transparent objects.
- Robust, automatic
- Point-sampled geometry based on the visual hull.
- Objects can be rendered in novel environments.

Point-Based Computer Graphics

Previous Work

Crenon

- Active and passive 3D scanners
- Work best for diffuse materials.
- Fuzzy, transparent, and refractive objects are difficult.
- BRDF estimation, inverse rendering
- Image based modeling and rendering
- Reflectance fields [Debevec et al. 00]
- Light Stage system to capture reflectance fields
- Fixed viewpoint, no geometry
- Environment matting [Zongker et al. 99, Chuang et al. 00]
- Capture reflections and refractions
- Fixed viewpoint, no geometry

Acquisition

- For each viewpoint (6 cameras $\times 72$ positions)
- Alpha mattes
- Use multiple backgrounds [Smith and Blinn 96]
- Reflectance images
- Pictures of the object under different lighting
(4 lights $\times 11$ positions)
- Environment mattes
- Use similar techniques as [Chuang et al. 2000]

Point-Based Computer Graphics
Hanspeter Pfister, MERL

Approximate Geometry

- The approximate visual hull is augmented by radiance data to render concavities, reflections, and transparency.

Surface Light Fields

ลढm

- A surface light field is a function that assigns a color to each ray originating on a surface. [Wood et al., 2000]

Point-Based Computer Graphics
Hanspeter Pfister, MERL

| Color Blending |
| :--- | :--- |
| - Blend colors based on angle between virtual
 camera and stored colors.
 - Unstructured Lumigraph Rendering
 [Buehler et al., SIGGRAPH 2001]
 - View-Dependent Texture Mapping
 [Debevec, EGRW 98]

 |

Geometry - Opacity Hull

- Store the opacity of each observation at each point on the visual hull [Matusik et al. SIG2002].

Point-Based Computer Graphics

Opacity Hull - Discussion

```
C-5002
```

- View dependent opacity vs. geometry trade-off.
- Similar to radiance vs. geometry trade-off.
- Sometimes acquiring the geometry is not possible (e.g. resolution of the acquisition device is not adequate).
- Sometimes representing true geometry would be very inefficient (e.g. hair, trees).
- Opacity hull stores the "macro" effect.
$\begin{array}{ll}\text { Point-Based Computer Graphics } & \text { Hanspeter Pfister, MERL } 20\end{array}$

Point-Based Models

2cem

- No need to establish topology or connectivity.
- No need for a consistent surface parameterization for texture mapping.
- Represent organic models (feather, tree) much more readily than polygon models.
- Easy to represent view-dependent opacity and radiance per surface point.

Light Transport Model

- Assume illumination originates from infinity.
- The light arriving at a camera pixel can be described as:

$$
C(x, y)=\int_{\Omega} W(\omega) E(\omega) d \omega
$$

$C(x, y) \quad$ - the pixel value
$E \quad$ - the environment
W - the reflectance field

Surface Reflectance Fields

- 6D function: $W\left(P, \omega_{i}, \omega_{r}\right)=W\left(u_{r}, v_{r} ; \theta_{i}, \Phi_{i} ; \theta_{r}, \Phi_{r}\right)$

Reflectance Field Acquisition

- We separate the hemisphere into high resolution Ω_{h} and low resolution $\Omega_{\text {l }}^{\text {[Matusik }}$ et al., EGRW2002].

$C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega$

> | Point-Based Computer Graphics | Hanspeter Pfister, MERL | 26 |
| :--- | :--- | :--- |

Acquisition

Creond

- For each viewpoint (6 cameras $\times 72$ positions)
- Alpha mattes
- Use multiple backgrounds [Smith and Blinn 96]
- Reflectance images \longleftarrow Low resolution
- Pictures of the object under different lighting
(4 lights $\times 11$ positions)
- Environment mattes \longleftarrow High resolution
- Use similar techniques as [Chuang et al. 2000]

Low-Resolution Reflectance Field

Caxos

$$
C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega
$$

- W_{l} sampled by taking pictures with each light turned on at a time [Debevec et al 00].

$\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega \approx \sum_{i=1}^{n} W_{i} L_{i}$ for n lights

High-Resolution Reflectance Field

- Subdivide images into 8×8 pixel blocks.
- Keep blocks containing the object (avg. compression 1:7)
- PCA compression (avg. compression 1:10)

$C(x, y)=\int_{\Omega_{h}} W_{h}(\xi) T(\xi) d \xi+\int_{\Omega_{l}} W_{l}\left(\omega_{i}\right) L\left(\omega_{i}\right) d \omega$
- Use techniques of environment matting [Chuang et al., SIGGRAPH 00].
- Approximate W_{h} by a sum of up to two Gaussians:
- Reflective G_{1}.
- Refractive G_{2}.

$W_{h}(\xi)=a_{1} G_{1}+a_{2} G_{2}$
Point-Based Computer Graphics
Hanspeter Pfister, MERL
30

Surface Reflectance Fields

- Work without accurate geometry.
- Surface normals are not necessary.
- Capture more than reflectance:
- Inter-reflections
- Subsurface scattering
- Refraction
- Dispersion
- Non-uniform material variations
- Simplified version of the BSSRDF [Debevec et al., 00].

Point-Based Computer Graphics
Hanspeter Pfister, MERL 31

Rendering

- Input: Opacity hull, reflectance data, new environment
- Create radiance images from environment and low-resolution reflectance field.
- Reparameterize environment mattes.
- Interpolate data to new viewpoint.
$1^{\text {st }}$ Step: Relighting $\Omega_{\text {। }}$
- Compute radiance image for each viewpoint.

$2^{\text {nd }}$ Step: Reproject Ω_{h}

- Project environment mattes onto the new environment.
- Environment mattes acquired was parameterized on plane T (the plasma display).
- We need to project the Gaussians to the new environment map, producing new Gaussians.

[^0]

Hanspeter Pfister, MERL

- From new viewpoint, for each surface point, find four nearest acquired viewpoints.
- Store visibility vector per surface point.
- Interpolate using unstructured lumigraph interpolation [Buehler et al., SIGGRAPH 01] or viewdependent texture mapping [Debevec 96].
- Opacity.
- Contribution from low-res reflectance field (in the form of radiance images).
- Contribution from high-res reflectance field.

| $3^{\text {rd }}$ Step: Interpolation |
| :--- | :--- | :--- | :--- |
| - For low-res reflectance field, we interpolate
 the RGB color from the radiance images.
 For high-resolution
 reflectance field:
 Interpolate direction of
 reflection/refraction.
 Interpolate other
 parameters of the
 Gaussians.
 Conolve with the
 environment. |

| Outline |
| :--- | :--- |
| - Overview
 - Previous Works
 - Geometry
 - Reflectance
 - Rendering
 $>$ Results |

Conclusions

- A fully automatic system that is able to capture and render any type of object.
- Opacity hulls combined with lightfields / surface reflectance fields provide realistic 3D graphics models.
- Point-based rendering offers easy surface parameterization of acquired models.
- Separation of surface reflectance fields into highand low-resolution areas is practical.
- New rendering algorithm for environment matte interpolation.

Acknowledgements

- Colleagues:
- MIT: Chris Buehler, Tom Buehler.
- MERL: Bill Yerazunis, Darren Leigh, Michael Stern.
- Thanks to:
- David Tames, Jennifer Roderick Pfister.
- NSF grants CCR-9975859 and EIA-9802220.
- Papers available at:
- http://www.merl.com/people/pfister/

[^0]: Point-Based Computer Graphics

