
Point-Based Computer Graphics Hanspeter Pfister, MERL 1

Acquisition of Point-Sampled
Geometry and Appearance

Hanspeter Pfister, MERL
pfister@merl.com

Wojciech Matusik, MIT
Addy Ngan, MIT

Paul Beardsley, MERL
Remo Ziegler, MERL

Leonard McMillan, MIT

Point-Based Computer Graphics Hanspeter Pfister, MERL 2

The Goal: To Capture Reality

• Fully-automated 3D model creation of real
objects.

• Faithful representation of appearance for
these objects.

Point-Based Computer Graphics Hanspeter Pfister, MERL 3

Image-Based 3D Photography

• An image-based 3D scanning system.
• Handles fuzzy, refractive, transparent objects.
• Robust, automatic
• Point-sampled geometry based on the visual hull.
• Objects can be rendered in novel environments.

Point-Based Computer Graphics Hanspeter Pfister, MERL 4

Previous Work

• Active and passive 3D scanners
• Work best for diffuse materials.
• Fuzzy, transparent, and refractive objects are difficult.

• BRDF estimation, inverse rendering
• Image based modeling and rendering

• Reflectance fields [Debevec et al. 00]

• Light Stage system to capture reflectance fields
• Fixed viewpoint, no geometry

• Environment matting [Zongker et al. 99, Chuang et al. 00]

• Capture reflections and refractions
• Fixed viewpoint, no geometry

Point-Based Computer Graphics Hanspeter Pfister, MERL 5

Outline

• Overview
System

• Geometry
• Reflectance
• Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 6

The System

Light Array

Cameras

Rotating Platform
Multi-Color
Monitors

Point-Based Computer Graphics Hanspeter Pfister, MERL 7

Outline

• Overview
• System

Geometry
• Reflectance
• Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 8

Acquisition

• For each viewpoint (6 cameras x 72
positions)
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different

lighting
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Point-Based Computer Graphics Hanspeter Pfister, MERL 9

Geometry – Opacity Hull

• Visual hull augmented with view-dependent
opacity.

Point-Based Computer Graphics Hanspeter Pfister, MERL 10

Approximate Geometry

• The approximate visual hull is augmented by
radiance data to render concavities,
reflections, and transparency.

Point-Based Computer Graphics Hanspeter Pfister, MERL 11

Geometry Example

Point-Based Computer Graphics Hanspeter Pfister, MERL 12

Surface Light Fields

• A surface light field is a function that
assigns a color to each ray originating on a
surface. [Wood et al., 2000]

Point-Based Computer Graphics Hanspeter Pfister, MERL 13

Shading Algorithm

• A view-dependent strategy.

Point-Based Computer Graphics Hanspeter Pfister, MERL 14

Color Blending

• Blend colors based on angle between virtual
camera and stored colors.

• Unstructured Lumigraph Rendering
[Buehler et al., SIGGRAPH 2001]

• View-Dependent Texture Mapping
[Debevec, EGRW 98]

Point-Based Computer Graphics Hanspeter Pfister, MERL 15

Point-Based Rendering

• Point-based rendering using LDC tree,
visibility splatting, and view-dependent
shading.

Point-Based Computer Graphics Hanspeter Pfister, MERL 16

Geometry – Opacity Hull

• Store the opacity of each observation at
each point on the visual hull [Matusik et al.
SIG2002].

Point-Based Computer Graphics Hanspeter Pfister, MERL 17

Geometry – Opacity Hull

• Assign view-dependent opacity to each ray
originating on a point of the visual hull.

Red = invisible
White = opaque
Black = transparent

φA

B C

A B C

(θ,φ)

θ
Point-Based Computer Graphics Hanspeter Pfister, MERL 18

Example

Photo

Visual Hull

Surface
Light Field

Opacity
Hull

Point-Based Computer Graphics Hanspeter Pfister, MERL 19

Results

• Point-based rendering using EWA splatting,
A-buffer blending, and edge antialiasing.

Point-Based Computer Graphics Hanspeter Pfister, MERL 20

Opacity Hull – Discussion

• View dependent opacity vs. geometry
trade-off.
• Similar to radiance vs. geometry trade-off.

• Sometimes acquiring the geometry is not
possible (e.g. resolution of the acquisition
device is not adequate).

• Sometimes representing true geometry
would be very inefficient (e.g. hair, trees).

• Opacity hull stores the “macro” effect.

Point-Based Computer Graphics Hanspeter Pfister, MERL 21

Point-Based Models

• No need to establish topology or
connectivity.

• No need for a consistent surface
parameterization for texture mapping.

• Represent organic models (feather, tree)
much more readily than polygon models.

• Easy to represent view-dependent opacity
and radiance per surface point.

Point-Based Computer Graphics Hanspeter Pfister, MERL 22

Outline

• Overview
• Previous Works
• Geometry

Reflectance
• Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 23

Light Transport Model

• Assume illumination originates from
infinity.

• The light arriving at a camera pixel can be
described as:

C(x,y) - the pixel value
E - the environment
W - the reflectance field

ωωω dEWyxC)()(),(∫
Ω

=

Point-Based Computer Graphics Hanspeter Pfister, MERL 24

Surface Reflectance Fields

• 6D function:ωi

ωr

P

),;,;,(),,(rriirrri vuWPW ΦΦ= θθωω

ωi

Point-Based Computer Graphics Hanspeter Pfister, MERL 25

Reflectance Functions

• For each viewpoint, 4D function:

(θi,φi
)

θi

φi

),;,()(iiixy yxWW Φ= θω

Point-Based Computer Graphics Hanspeter Pfister, MERL 26

Reflectance Field Acquisition

• We separate the hemisphere into high
resolution Ωh and low resolution Ωl [Matusik
et al., EGRW2002].

ωωωξξξ dLWdTWyxC iilh

lh

)()()()(),(∫∫
ΩΩ

+=

Ωh Ωl
T

L(ω
)

Point-Based Computer Graphics Hanspeter Pfister, MERL 27

Acquisition

• For each viewpoint (6 cameras x 72
positions)
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different

lighting
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Low resolution

High resolution

Point-Based Computer Graphics Hanspeter Pfister, MERL 28

Low-Resolution Reflectance Field

• Wl sampled by taking pictures with each light
turned on at a time [Debevec et al 00].

ωωω dLW iil

l

)()(∫
Ω

∑
=

≈
n

i
ii LW

1

for n lights

ξξξ dTW
h

h)()(∫
Ω

=),(yxC ωωω dLW iil

l

)()(∫
Ω

+

Point-Based Computer Graphics Hanspeter Pfister, MERL 29

• Subdivide images into 8 x 8 pixel blocks.
• Keep blocks containing the object (avg.

compression 1:7)
• PCA compression (avg. compression 1:10)

Compression

PCA

a0 a1 a2 a3 a4 a5

Point-Based Computer Graphics Hanspeter Pfister, MERL 30

High-Resolution Reflectance Field

• Use techniques of environment matting
[Chuang et al., SIGGRAPH 00].

• Approximate Wh by a sum of up to two
Gaussians:
• Reflective G1.
• Refractive G2.

N G1

G2

ξξξ dTW
h

h)()(∫
Ω

=),(yxC ωωω dLW iil

l

)()(∫
Ω

+

2211)(GaGaWh +=ξ

Point-Based Computer Graphics Hanspeter Pfister, MERL 31

Surface Reflectance Fields

• Work without accurate geometry.
• Surface normals are not necessary.
• Capture more than reflectance:

• Inter-reflections
• Subsurface scattering
• Refraction
• Dispersion
• Non-uniform material variations

• Simplified version of the BSSRDF [Debevec et
al., 00].

Point-Based Computer Graphics Hanspeter Pfister, MERL 32

Outline

• Overview
• Previous Works
• Geometry
• Reflectance

Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 33

Rendering

• Input: Opacity hull, reflectance data, new
environment

• Create radiance images from environment
and low-resolution reflectance field.

• Reparameterize environment mattes.
• Interpolate data to new viewpoint.

Point-Based Computer Graphics Hanspeter Pfister, MERL 34

1st Step: Relighting Ωl

• Compute radiance image for each viewpoint.

The sum is the radiance image of this
viewpoint in this environment.

x
=

Downsample

New
Illumination

Point-Based Computer Graphics Hanspeter Pfister, MERL 35

2nd Step: Reproject Ωh

• Project environment mattes onto the new
environment.
• Environment mattes acquired was

parameterized on plane T (the plasma display).
• We need to project the Gaussians to the new

environment map, producing new Gaussians.

Ω h
T

Point-Based Computer Graphics Hanspeter Pfister, MERL 36

3rd Step: Interpolation

• From new viewpoint, for each surface point, find
four nearest acquired viewpoints.
• Store visibility vector per surface point.

• Interpolate using unstructured lumigraph
interpolation [Buehler et al., SIGGRAPH 01] or view-
dependent texture mapping [Debevec 96].
• Opacity.
• Contribution from low-res reflectance field (in the form of

radiance images).
• Contribution from high-res reflectance field.

Point-Based Computer Graphics Hanspeter Pfister, MERL 37

3rd Step: Interpolation

• For low-res reflectance field, we interpolate
the RGB color from the radiance images.

V1

V2

G1r

G1t

G2r

G2t

N ~

~

~

~

For high-resolution
reflectance field:

Interpolate direction of
reflection/refraction.
Interpolate other
parameters of the
Gaussians.
Convolve with the
environment.

Point-Based Computer Graphics Hanspeter Pfister, MERL 38

Outline

• Overview
• Previous Works
• Geometry
• Reflectance
• Rendering

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 39

Results

• Performance for 6x72 = 432 viewpoints
• 337,824 images taken in total !!

• Acquisition (47 hours)
• Alpha mattes – 1 hour
• Environment mattes – 18 hours
• Reflectance images – 28 hours

• Processing
• Opacity hull ~ 30 minutes
• PCA Compression ~ 20 hours (MATLAB, unoptimized)

• Rendering ~ 5 minutes per frame
• Size

• Opacity hull ~ 30 - 50 MB
• Environment mattes ~ 0.5 - 2 GB
• Reflectance images ~ Raw 370 GB / Compressed 2 - 4 GB

Point-Based Computer Graphics Hanspeter Pfister, MERL 40

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 41

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 42

Results

hΩHigh-resolution lΩLow-resolution Combined

Point-Based Computer Graphics Hanspeter Pfister, MERL 43

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 44

Results – Ωh

Point-Based Computer Graphics Hanspeter Pfister, MERL 45

Results – Ωl

Point-Based Computer Graphics Hanspeter Pfister, MERL 46

Results – Combined

Point-Based Computer Graphics Hanspeter Pfister, MERL 47

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 48

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 49

Conclusions

• A fully automatic system that is able to capture
and render any type of object.

• Opacity hulls combined with lightfields / surface
reflectance fields provide realistic 3D graphics
models.

• Point-based rendering offers easy surface
parameterization of acquired models.

• Separation of surface reflectance fields into high-
and low-resolution areas is practical.

• New rendering algorithm for environment matte
interpolation.

Point-Based Computer Graphics Hanspeter Pfister, MERL 50

Future Directions

• Use more than 2 Gaussians for the
environment mattes.

• Better compression.
• Real-time rendering.

Point-Based Computer Graphics Hanspeter Pfister, MERL 51

Acknowledgements

• Colleagues:
• MIT: Chris Buehler, Tom Buehler.
• MERL: Bill Yerazunis, Darren Leigh, Michael

Stern.

• Thanks to:
• David Tames, Jennifer Roderick Pfister.

• NSF grants CCR-9975859 and EIA-9802220.
• Papers available at:

• http://www.merl.com/people/pfister/

