The Blue-C.

Martin Näf
Computer Graphics Group
ETH Zürich

State of the Art

- The Cave (Univ. of Illinois)
State of the Art

- Teleport/Virtual Meeting (GMD)

State of the Art

- Office of the Future (UNC)
Limitations

- Integration of 3D projection and real-time video acquisition very limited
- No real-time vision systems embedded
- No (truly) hybrid rendering methods
- Current user interfaces are still in children’s booths

Goals

- Build a highly immersive VR environment for collaborative work
- Allow users to freely navigate, meet, and collaborate in virtual worlds
- Real time acquisition and 3-D composition of live video streams of real actors in virtual environments
- Polyproject: CGG, CVG, PCCV, CAAD and ZPE
Blue-C.

Blue-C. Application Building Interface

A General Purpose Collaborative Immersive Virtual Reality Software Interface
Table of Contents

- Collaborative systems
 - Introduction
 - Data types
 - Decision problems

- Scene-graph
 - Introduction
 - Market overview

Collaborative Systems

- Multiple sites
- Distributed static and dynamic data
- Distributed modifications on data
- Distributed decisions

- Extensive research for battlefield simulations (SIMNET)
Data Types: Static

- Terrain, buildings, installations, vehicles operating on predefined paths
- Global data storage required
- Data distribution
 - Network file system (NFS, AFS, etc.)
 - “Web-interfaces” (HTTP, FTP)
 - Proprietary solutions
- Solutions are available
 - CAVERN: HTTP, remote file I/O

Data Types: Dynamic

- Controlled vehicles, actors, particles
- Object data
 - Position and rotation
 - Velocity vector
 - Additional state
- Update events
 - Delivery and consistency guarantees
 - Latency
- Solutions
 - HLA/DIS protocols
Data Types: Streams

- Audio and video data
- Geometry (MPEG 4)
- Strict real-time conditions
- Constant bandwidth and latency
- Compression
- Adaptive algorithms – react to change in conditions

Distributed Modifications

- Consistency problem
- Smooth updates (i.e. vehicle positions)
- Transaction system
- Exclusive locking vs. continuous updates
Distributed Decisions

- Problem: Hit-test on outdated data
- Coherent decisions

- Solutions:
 - Client-Server concept
 - Strict locking
 - No guarantees
 - Anticipation

Conclusions

- Distributed database in real-time environment
- No single solution for updates or decisions
- Different solutions available
Scene-Graph Introduction

- Main data structure for rendering
 - Geometry
 - Object attributes (material, textures)
 - Environment (Lights, horizon)

- Hierarchical structure

Scene-Graph Structure
Scene-Graph Operations

- Traversal
 - Culling
 - Level of detail selection
 - Rendering
 - Hit-test
- Object modifications
 - Geometry
 - Attributes
 - Meta-data

Why not write your own?

- Optimizations
 - Avoid duplicate traversal of nodes
 - Avoid OpenGL-state changes
 - Texture optimizations
 - Reduce downloads, clip-mapping, paging
 - Automatic level of detail selection
 - Optimize culling (bounding boxes etc.)
- Multi-CPU / multi-pipe support
- File loaders, format converter tools
Requirements

- Large models
- Real-time support
- Multi-pipe, stereo rendering
- Multi-CPU support
- File format compatibility
 - Geometry (VRML, IV, Alias, ProEngineer)
 - Texture (TIFF, GIF, JPG)

Iris Inventor

- Developed by Silicon Graphics
- Pro
 - Easy to use
 - Extensible, object-oriented design
 - “Active objects” allow interactive applications
 (⇒ VRML)
- Con
 - Efficiency
 - No multi-pipe support
 - No multi-CPU support
Performer

- Successor to Inventor
- *THE* standard for VR-applications
- Pro
 - Fast, with real-time capabilities
 - Multi-pipe, multi-CPU support
 - Clean, extensible design
- Con
 - Specialized for VIS/SIM applications
 - Multiprocessing limited to rendering
 - No freeform-surface support

Performer - Processes
Cosmo3D / Optimizer

- Cross-Platform API developed by SGI
- Base for Java3D
- Pro
 - VRML support
 - Layered approach: Modules for CAD, Vis/Sim
 - Support for large models (enhanced culling)
- Con
 - No real-time features
 - Future support and development?

Open GVS

- Owned by Quantum3D

- Pro
 - Multi-platform support
 - Fast
- Con
 - Limited multi-CPU support
 - Not really “open”
Open RM

- Developed by R3vis

- Pro
 - Open source
 - Volume rendering support

- Con
 - No multi-CPU, multi-pipe support
 - Very limited file format support
 - Limited support

Open Scene Graph

- Open source (ZGDV Darmstadt)

- Pro
 - Open source, cross platform
 - Multi-CPU, multi-pipe support
 - Clean design from scratch
 - Support for free-form surfaces

- Con
 - No real-time features
 - Not yet available
DirectX

- Microsoft Multimedia API
 - Direct3D retained mode

- Pro
 - Supports animation
 - Optimized for inexpensive hardware

- Con
 - “Better display-list”
 - No multi-pipe support
 - Single platform (Win32)

Java 3D

- Scene-graph for Java

- Pro
 - Portable
 - Clean, modern interface
 - Good performance for static scenes

- Con
 - Java-only
 - No multi-pipe support
 - Real-time constraints vs. garbage collection
Dead APIs

- Open Inventor
- OpenGL++
- Fahrenheit
- Many more

Conclusions

- No one-fits-all solution
- Performer is still the first choice for VR
- Open Scene Graph?
Discussion