
Implicit Ray Casting of the Parallel Vectors Operator
Additional Material

Ramon Witschi and Tobias Günther

1 DERIVATION SECTIONAL NEWTON DESCENT

The third component of the cross product f vanishes to zero, if the
first two components are already zero. To see this, assume that the
first two components of f(x) are 0 and w3 6= 0:

f(x) = v(x)×w(x) =

v2w3− v3w2
v3w1− v1w3
v1w2− v2w1

=

 0
0

v1w2− v2w1

 (1)

The only exception is the special case of v(x) 6= 0, w(x) 6= 0 and
v3 = w3 = 0, which is caught by the solver not converging [2].
Solving for v1 =

v3w1
w3

and v2 =
v3w2
w3

and inserting into Eq. (1) yields: 0
0

v3w1
w3

w2− v3w2
w3

w1

=

0
0
0

 (2)

We can therefore consider only two components of f and follow
Schindler et al. [2] in choosing the components fk, fl that maximize

k, l = argmax
k,l∈{0,1,2}

‖∇ fk(xi)×∇ fl(xi)‖2 , s.t. k 6= l (3)

We can find the roots of f by considering only two components of

∇f(xi) ·d =−f(xi) (4)

which gives rise to the linear system

(∇ fk(xi),∇ fl(xi))
T ·d =−

(
fk(xi)
fl(xi)

)
(5)

where d is a linear combination of the two selected gradients:

d = α∇ fk(xi)+β∇ fl(xi) = (∇ fk(xi),∇ fl(xi))

(
α

β

)
(6)

Inserting Eq. (6) into Eq. (5) and rearranging for the weights α , β :(
α

β

)
=−A−1 ·

(
fk(xi)
fl(xi)

)
(7)

with A = (∇ fk(xi),∇ fl(xi))
T (∇ fk(xi),∇ fl(xi)). Inserting the

weights α , β from Eq. (7) into Eq. (6) leads to the expression

d =−
(
∇ fk(xi), ∇ fl(xi)

)
·A-1 ·

(
fk(xi)
fl(xi)

)
(8)

Implementation Details. During the sectional Newton descent,
we use trilinear hardware interpolation to sample the vector fields
v and w, when evaluating the current residual. The filter field s(x)
can be sampled with nearest-interpolation. Our Newton descent
employs a trust-region, which means that each step has an upper

Algorithm 1: Test if a parallel vectors solution may be con-
tained on the face of a cell. Indices are zero-based.

Data: v00, v01,v10, v11, w00, w01,w10, w11 ∈ R3

Result: TRUE or FALSE

for (i, j) in {(1,2),(2,0),(0,1)} do
b0 := v00[i] ·w00[j]−v00[j] ·w00[i] ;
b2 := v01[i] ·w01[j]−v01[j] ·w01[i] ;
b6 := v10[i] ·w10[j]−v10[j] ·w10[i] ;
b8 := v11[i] ·w11[j]−v11[j] ·w11[i] ;
b1 := 1

2 (v00[i] ·w01[j]+v01[i] ·w00[j]−v00[j] ·w01[i]−v01[j] ·w00[i]) ;
b3 := 1

2 (v00[i] ·w10[j]+v10[i] ·w00[j]−v00[j] ·w10[i]−v10[j] ·w00[i]) ;
b5 := 1

2 (v01[i] ·w11[j]+v11[i] ·w01[j]−v01[j] ·w11[i]−v11[j] ·w01[i]) ;
b7 := 1

2 (v10[i] ·w11[j]+v11[i] ·w10[j]−v10[j] ·w11[i]−v11[j] ·w10[i]) ;
b4 := 1

4 (v00[i] ·w11[j]+v01[i] ·w10[j]+v10[i] ·w01[j]+v11[i] ·w00[j]−
v00[j] ·w11[i]−v01[j] ·w10[i]−v10[j] ·w01[i]−v11[j] ·w00[i]) ;

If (bk > 0 : ∀k) return FALSE ;
If (bk < 0 : ∀k) return FALSE ;

return TRUE;

bound of one voxel. Further, if the residual increases, the step is
revoked and the step size is decreased for the next attempt. Since
the filter field s(x) takes us close to a solution, we use in practice at
most 10 iterations for the sectional Newton descent. Later in Fig. 2,
we vary the number of iterations, showing that 10 is an adequate
choice. Note that for 0 iterations, the filter field s(x) is visualized.

2 PSEUDO CODE

2.1 Bézier-based Test if PV Solution Exists

The search for a PV solution is a multi-variate root finding problem:

f(x,y) = v(x,y)×w(x,y) =

 f1(x,y)
f2(x,y)
f3(x,y)

=

0
0
0

 (9)

By converting the cross product components into Bernstein basis
Bn

i (t) =
(n

i
)
t i(1− t)n−i:

fk(x,y) =
2

∑
i=0

2

∑
j=0

Bn
i (x) ·Bn

j(y) ·bk
i, j (10)

the potential existence of a PV solution on the face of a cell can be
tested using the convex hull property, as listed in Alg. 1.

2.2 Ray Marching Loop

Alg. 2 gives a high-level view of the inner steps of the ray marching
loop. At each sample location, we first lookup the filter field to do
empty space skipping. If we are in or nearby a voxel with potential
PV solution, we perform the sectional Newton descent. If the descent
does not converge to a solution, we return to advance on the ray with
the next step. If a solution is found, a ray intersection test with the
tube proxy is performed. On success, the normal is estimated and
Lambertian shading is performed. Transfer functions are stored in
look-up tables.

Algorithm 2: PV Operator inner ray-marching loop

Data: current position x on ray, filter field s(x)
Result: RBGA or NONE

if
(
NOT s(x)

)
return NONE;

// Use root x∗ as the center of the cylinder.
x∗ := sectional Newton descent(x);

if
(

x∗ = NONE or NOT s(x∗)
)

return NONE;

// Cylinder orientation, see [3].
t := compute tangent(x∗)
// x̃ is the ray-cylinder intersection point.
x̃ := ray cylinder intersection(x∗, t);

if
(

x̃ = NONE
)

return NONE;

// Compute cylinder normal at intersection.
n := compute normal(x∗, t, x̃);
return RGBA shading(n);

Algorithm 3: Sampling of ∇f in trilinearly interpolated vec-
tor fields v(x) and w(x). (x,y,z)T ∈ [0,1]3 is the relative
position in the cell, and lerp(a,b, t) = (1− t) ·a+ t ·b.

Data: x,y,z ∈ R, v000, v001,v010, v011, v100, v101,v110, v111,
w000, w001, w010, w011, w100, w101, w110, w111 ∈ R3

Result: ∇f = (fx, fy, fz)

h1 := lerp(lerp(w001−w000,w101−w100,x),
lerp(w011−w010,w111−w110,x),y) ;

h2 := lerp(lerp(v001−v000,v101−v100,x),
lerp(v011−v010,v111−v110,x),y) ;

h3 := lerp(lerp(w010−w000,w110−w100,x),
lerp(w011−w001,w111−w101,x),z) ;

h4 := lerp(lerp(v010−v000,v110−v100,x),
lerp(v011−v001,v111−v101,x),z) ;

h5 := lerp(lerp(w100−w000,w110−w010,y),
lerp(w101−w001,w111−w011,y),z) ;

h6 := lerp(lerp(v100−v000,v110−v010,y),
lerp(v101−v001,v111−v011,y),z) ;

h7 := lerp(lerp(lerp(v000,v100,x), lerp(v010,v110,x),y),
lerp(lerp(v001,v101,x), lerp(v011,v111,x),y),z) ;

h8 := lerp(lerp(lerp(w000,w100,x), lerp(w010,w110,x),y),
lerp(lerp(w001,w101,x), lerp(w011,w111,x),y),z)

;
fx := h6×h8 +h7×h5 ;
fy := h4×h8 +h7×h3 ;
fz := h2×h8 +h7×h1 ;

2.3 Sampling the Cross-Product Jacobian
Solving for the direction d of the next step in Eq. (8) requires the
gradients of the cross-product components, i.e., ∇ f1, ∇ f2, and ∇ f3.
In Alg. 3, we provide the pseudo-code for the sampling of the cross-
product Jacobian of two trilinearly interpolated vector fields. Note
that the gradients of the cross-product components ∇ f1, ∇ f2 and
∇ f3 are found in the rows of the Jacobian of the cross-product ∇f:

∇f =

 | | |
fx fy fz
| | |

=

− ∇ f T
1 −

− ∇ f T
2 −

− ∇ f T
3 −

 (11)

Sphere Approximation. Instead of approximating a line locally
with cylinders, it is possible to approximate it as union of spheres,

which avoids the estimation of the tangent direction t. In our ex-
periments, spheres and cylinders produced mostly the same results
at the same frame rate. Differences become apparent when using
a small radius: Lines spanned by oriented cylinders cover slightly
more screen space and are therefore longer visible, see Fig. 3. The
adequate choice of the ray marching step size has a greater effect
on the perceived continuity than the choice between local sphere or
cylinder approximation.

3 PARAMETER STUDY

Step Size. In Fig. 1, we varied the step size of the ray marcher.
With sufficiently small step size, the lines are not skipped and alias-
ing is avoided. In practice, we used a half voxel size.

Descent Iterations. In our experiments, a 10 iterations were
sufficient to obtain visually satisfying results in all experiments,
since the descent starts close to the solution. There was no further
visual improvement, when using more iterations. If the cross product
residual is below a numerical epsilon, the descent terminates sooner.

Viewport Resolution. We tested our method on an Intel Core
i7-8700k, with 6 physical cores clocked at 3.7Ghz, 48GB RAM
and an RTX2080TI with 11GB VRAM. In Fig. 4, we studied how
the performance scales for varying viewport resolutions. We tested
resolutions of 500×500, 1000×1000, etc. At a very high resolution
of 4000×4000, the performance can drop to about 1.5sec per frame.
For moderate display resolutions, our hardware achieves interactive
performance, which is suitable for parameter exploration of feature
extraction algorithms.

4 EXPLICIT PARTICLE-BASED EXTRACTION

The explicit extraction of PV solutions, however, is not fast enough
for real-time parameter exploration, such as vortex criterion selec-
tion, application of filters, or suitable subtraction of ambient motion.
Thus, we introduced an implicit PV renderer, which can serve as
a preview tool. If explicit geometry is required, two options are
available: particle-based extraction and grid-based extraction, which
can be applied once afterwards. For example, Kindlmann et al. [1]
applied their descent method to a large set of particles in order to
extract a geometric representation. In Fig. 5, we did this similarly
with our descent approach. In the SWIRLING JET, a point cloud of
33,619 vertices is constructed in 0.6 seconds on the CPU, where
each point has a residual cross product norm of under 10−8. Further,
we used a grid-based extraction to compute the explicit groundtruth
solutions, using the Bezier-based subdivision algorithm described in
Alg. 1. Note that this experiment does not include the extraction of
connected lines from the particles.

5 PERFORMANCE BENCHMARK DETAILS

Please find in Fig. 6 the camera configurations used in Table 1 of the
main paper for the benchmark results. In the supplementary video,
we show a real-time capture of the BORROMEAN RINGS time series
including the interactive volume rendering of the vorticity magnitude.
There, we interactively change parameters with the visible frame
rate to give an impression of the performance in interactive use.

REFERENCES

[1] G. Kindlmann, C. Chiw, T. Huynh, A. Gyulassy, J. Reppy, and P.-
T. Bremer. Rendering and extracting extremal features in 3D fields.
Computer Graphics Forum, 37(3):525–536, 2018.

[2] B. Schindler, R. Fuchs, J. Biddiscombe, and R. Peikert. Predictor-
corrector schemes for visualization of smoothed particle hydrodynamics
data. IEEE Transactions on Visualization and Computer Graphics,
15:1243–, 11 2009. doi: 10.1109/TVCG.2009.173

[3] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Ex-
traction of parallel vector surfaces in 3D time-dependent fields and
application to vortex core line tracking. In Proc. IEEE Visualization, pp.
631–638, 2005. doi: 10.1109/VISUAL.2005.1532851

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13439
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13439
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13439
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13439
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13439
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13439
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/TVCG.2009.173
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851
https://doi.org/10.1109/VISUAL.2005.1532851

(a) step size = 0.1 voxels (b) step size = 0.5 voxels (c) step size = 1.0 voxels (d) step size = 1.5 voxels (e) step size = 2.0 voxels (f) step size = 2.5 voxels

Figure 1: Comparison of varying ray marching step sizes, shown here for a close-up of the CYLINDER flow.

0 iterations 1 iterations 2 iterations 5 iterations 10 iterations

Figure 2: Results for varying number of sectional Newton descent iterations in the SWIRLING JET using the v ‖ b criterion.

(a) Sphere approximation

(b) Cylinder approximation

Figure 3: Comparison of spheres and cylinders used to span the line geometry during the implicit ray casting with varying radii: 0.1 (left), 0.3
(middle) and 1.0 (right). Shown for the SWIRLING JET data set. Differences can be seen for small radii in the left-most column.

500 1,000 2,000 4,000

0

0.5

1

1.5

√
Resolution

Se
co

nd
s

Stuart Vortex
Borromean Rings

Cylinder
Swirling Jet
Delta Wing

Figure 4: Performance scaling plot of all datasets using our NVIDIA IndeX implementation (lower is better).

(a) 3,389 vertices, extraction time 0.061sec (b) 33,619 vertices, extraction time 0.604sec (c) 336,853 vertices, extraction time 6.150sec

Figure 5: Explicit extraction of point geometry by descending a uniformly distributed set of particles onto the nearest line structure. Here, a
CPU implementation of the sectional Newton descent was used.

(a) far view (b) close-up (c) far view (d) close-up

Figure 6: Here, the camera perspectives are shown that were used for the Nvidia IndeX performance benchmark, showcasing the rendering
coverage of the two most challenging data sets under consideration: The BORROMEAN RINGS (a), (b) and the SWIRLING JET (c), (d). The
rendering and volume resolution are the same as given in Table 1 in the main paper.

	Derivation Sectional Newton Descent
	Pseudo Code
	Bézier-based Test if PV Solution Exists
	Ray Marching Loop
	Sampling the Cross-Product Jacobian

	Parameter Study
	Explicit Particle-based Extraction
	Performance Benchmark Details

