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1. View Selection for Our 2 Views Architecture

Similarly to Figure 6 of our paper, we show in Figure 1
(top) the density of the learned views for six testing models,
this time for the case of our 2 views architecture. The first
row is the density of the first view, and the second row the
one of the second view. Again, the density functions con-
tain peaks and further regions with very low values, opti-
mized for different objects. Most interestingly, one can also
notice how the density functions of the two views are com-
plementary to each other: the regions of high values in the
first view usually have low values in the second view, and
the other way around. This demonstrates how our network
chooses different view points to combine their features and
optimize the results.

Like in our paper, for each test point cloud, we sample
the views corresponding to the highest value of the views
densities (i.e. the most likely views estimated by our net-
work), and show the depth images generated by our net-
work for those views in Figure 1 (bottom, first row for the
first view and second row for the second view). It is no-
ticeable how the views complement each other, by showing
different features of the objects. For example, one can see
the side of the cone and its bottom part, the side of the cup
and its inside, the top of the bench and its bottom part.

Like in Figure 7 of our paper, in Figure 2 we show fur-
ther view density functions and depth images for the highest
probability views, for a class of objects (lamps) using our
2 views architecture. Again, the pairs of learned views are
similar for objects of the same class, demonstrating how our
network specializes to the different objects. It is also clear
how the views are complementary to each other. In particu-
lar, the first view tends to show the lamps from the side, and
the second view often adds a shifted view point.

All the view density functions in the paper and in the
Supplementary Material are spheres rendered from a fixed
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Figure 1. Learned view density functions (top, first row for the first
view and second row for the second view), depth images generated
by our network corresponding to the most likely learned views
(bottom, first row for the first view and second row for the second
view), for our 2 views architecture.

arbitrary point view.

2. Comparison with PCA
In Figure 3 we show a comparison of our selected views

to views selected by exploiting the PCA components, as ex-
plained in the original paper. The three objects are indistin-
guishable from the PCA views, while easily recognizable
with our method. Both the generated depth images and the
point clouds rendered from the view points are shown.

3. Failure Cases and Comparison with Meshes
Due to the low resolution of the input point cloud and the

ambiguity of some models in the dataset, there exists a sub-
set of classes which are hard to classify. In Figure 4, three
objects from these classes are shown. Like PointNet and
the other most recent papers that handle point clouds, our
method fails to properly classify them, as the correspondent
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Figure 2. Learned view density functions and the depth images
corresponding to the views with highest probability for a class of
objects (lamps), for our 2 views architecture. The first row of the
density functions and of the depth images corresponds to the first
view, and the second row to the second view.

Table Monitor Bathtub
Figure 3. The views selected by PCA (top: point clouds), and by
our method (middle: point clouds, bottom: depth images).

generated depth images are ambiguous. The very detailed
meshes used in MVCNN [1] include more features (because
of their high resolution), and we believe this is the reason
for their higher accuracy numbers compared to point-based
methods. In Figure 5, we compare the original high reso-
lution meshes of two models with the meshes obtained by
reconstructing a point cloud of the objects sampled with the
same number of points that we use (2048), using the com-
monly adopted Poisson reconstruction method with optimal
parameters. As one can see, the reconstructed meshes (on

glass box Xbox night stand
Figure 4. Three classes where our generated views are ambiguous.

  plant XBox

Figure 5. The original high resolution mesh (left) and the recon-
structed mesh from a point cloud of 2048 points (right), for two
models (plant and XBox).

the right) contain way less details (XBox), and, sometimes,
the reconstruction even fails to correctly represent the shape
of the object (plant). This shows how generating meshes
from our sparse point clouds would not facilitate the prob-
lem.

4. View Selection Convergence Examples
In the accompanying video, we show how the generated

view by our single view architecture for three testing objects
(cup, couch and night stand) changes at every training step.
The objects were fed to the network with the same rotation
at every step, and the generated depth images were used as
frames to compose the video. Since we gradually decrease
the learning rate during training, it is expected to slowly see
convergence to a certain view and see the flickering in the
video decrease. It is noticeable, more importantly, how all
the three final views are proper and useful for the different
objects. In addition, one can also observe how convergence
happens at different training time for the three objects (first
for the cup, then for the couch and finally for the more dif-
ficult night stand). This further proves how our view selec-
tion component specializes its behavior depending on the
structure of the objects.

5. Comparison with Random Views Alterna-
tive

In Table 1, Table 2, and Table 3, we present the differ-
ence of obtained accuracy between our original method and
the random views alternative (± Acc.), for 1, 2 and 4 views



respectively, for the classes where the absolute difference
was at least 1%. As for the results in the paper, the numbers
from 5 evaluations were averaged for each case. The classes
in bold are the ones which were always better classified with
the random alternative (bench and radio), or always better
classified with our original architecture (piano, vase, desk,
table, baththub, dresser and night stand). It is noticeable
how our original architecture performs consistently better
in more classes than the random alternative, due to its spe-
cialized learned views that adapt to classes. As explained in
the paper, we believe that the random alternative can some-
times perform better than our method due to hard, ambigu-
ous classes present in the dataset (e.g., radio that can be
confused with other regular objects).

6. Gradients for Depth Image Generation
In this section, we present the gradients of our custom

module for depth images generation.
We name the nominator and denominator of the function

f(c) of Equation 4 in the original paper as follows:

f(c) =

∑
p∈P ′′(c) g(c, p)pz∑
p∈P ′′(c) g(c, p)

=
f1
c (P )

f2
c (P )

(1)

The gradients with respect to the position of a point p ∈
P for f1 can be defined as:

∂f1
c (P )

∂pz
=

{
0 if p /∈ P ′′(c)
g((cx, cy), (px, py)) otherwise

(2)

∂f1
c (P )

∂py

=

{
0 if p /∈ P ′′(c)
(cy−py)
σ2 g((cx, cy), (px, py))pz otherwise

(3)
The gradients for f2 are defined as follow:

∂f2
c (P )

∂pz
= 0 (4)

∂f2
c (P )

∂py
=

{
0 if p /∈ P ′′(c)
(cy−py)
σ2 g((cx, cy), (px, py)) otherwise

(5)
Similarly, the gradients with respect to px can be com-

puted.
The final derivative for f(c) is then defined by utilizing

the chain rule.
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Table 1. Difference of obtained accuracy between our original method and the random views alternative (± Acc.), for 1 view, per class.
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Table 2. Difference of obtained accuracy between our original method and the random views alternative (± Acc.), for 2 views, per class.
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Table 3. Difference of obtained accuracy between our original method and the random views alternative (± Acc.), for 4 views, per class.


