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ABSTRACT

The strong interest children show for mobile robots makes
these devices potentially powerful to teach programming.
Moreover, the tangibility of physical objects and the sociabil-
ity of interacting with them are added benefits. A key skill
that novices in programming have to acquire is the ability
to mentally trace program execution. However, because of
their embodied and real-time nature, robots make the mental
tracing of program execution difficult.

To address this difficulty, in this paper we propose an
automatic program evaluation framework based on a robot
simulator. We describe a real-time implementation providing
feedback and gamified hints to students.

In a user study, we demonstrate that our hint system in-
creases the percentage of students writing correct programs
from 50 % to 96 %, and decreases the average time to write a
correct program by 30 %. However, we could not show any cor-
relation between the use of the system and the performance of
students on a questionnaire testing concept acquisition. This
suggests that programming skills and concept understanding
are different abilities.

Overall, the clear performance gain shows the value of our
approach for programming education using robots.
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1 INTRODUCTION

The last decade has seen a large number of initiatives and
products aiming at teaching programming and computer
science to children using robots. They do so by providing
a simplified programming environment, typically visual, in-
side which children define the behavior of the robot. The
main motivations are the strong interest robots raise in chil-
dren, the tangibility of programming physical objects, and
the sociability of interacting with them. These elements are
important for the healthy physical, intellectual and social de-
velopment of children. Moreover, several studies have shown
that robots can be effective to teach certain computer science
and software engineering notions to beginners [1, 8]. In addi-
tion, with young children, robots can do so without a strong
gender bias [7]. Furthermore, robots show how information
processing can be embodied within the physical world.

However, it is not known whether robots are effective at
teaching computer science and software engineering in general,
especially compared to a traditional software programming
course. The fact that robots allow children to quickly write
programs that do something indicates neither deep learning
nor the acquisition of transferable skills. Moreover, a key skill
that novices in programming have to acquire is the ability
to mentally trace program execution [13]. We argue that
programming robots poses challenges, that combined, render
tracing programs difficult:

(1) Not steppable. Programs cannot be executed step by
step, as robots are physical real-time systems.

(2) Not trivially inspectable. As the program is not step-
pable, the internals of execution is not easily visible.

(3) Not deterministic. As robots operate in the contin-
uous real world, having sampled and noisy sensors
and imperfect motors, the execution of a program
might be hard to predict from the code itself.

(4) Bad source code locality. As most programming paradigms
for mobile robots are concurrent, modifying a part
of a program might affect other parts.
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Therefore, as observed by previous work [8], both students
and teachers face difficulties identifying bugs in their code,
and progressing beyond trivial exercises is problematic.

Hence, to leverage the advantages of robots for program-
ming education, one must overcome the aforementioned chal-
lenges. One way is to improve the programming tools to make
the internals of program execution more visible. Previous
work has, for example, explored the use of visual feedback
and augmented reality [5]. A complementary way to technical
tools is to train the tracing skills of the students, by guiding
them through problems of increasing difficulty.

A common way of providing adaptive guidance is to em-
ploy an intelligent hint generation system. In the context of
programming education, hint systems have been successful at
providing hints for code correctness [12] and coding style [2],
but have not yet been applied to robot programming.

A necessary brick to provide hints and feedback to students
is the ability to assess a given code regarding a set of met-
rics [4]. While there are well-established methods for software
programming [3], evaluating the quality of a robot program
and providing meaningful feedback to the student are open
research questions. In this paper, we address these questions.
In particular, we provide the following contributions:

(1) an automatic evaluation framework for robot pro-
grams based on running simulations in background,

(2) a real-time implementation on a mobile device, pro-
viding feedback and gamified hints to the student,

(3) a user study and its analysis, evaluating the effects
of this system on learning.

2 ROBOT PROGRAM EVALUATION

Static evaluation is difficult for robot programs, because a
slight change in a parameter might lead to a completely
different behavior. An obvious way to dynamically evaluate
a robot program is to run it on a real robot in a physical
environment and check whether the robot performs its task.
This is not practical for automatic program evaluation, as
instrumentalizing such tests would require a lot of resources
and result in slow results. Another way is to execute the
program within a virtual robot in a simulated environment.
That is significantly faster and can be fully automatized. A
potential drawback is that the quality of the program evalu-
ation depends on the accuracy of the simulation. However,
typical educative programming tasks do not rely on advanced
physical phenomena, so a simple simulator providing collision
and kinematic support would suffice.

2.1 Simulation-based performance evaluation

Figure 1 shows the overall structure of the robot program eval-
uation system. It is similar to software-only approaches [10],
but with all tests taking place within the simulator. However,
robot programs are difficult to separate into functional units,
so the breadth of a test varies in function of its simulation
conditions. For example, imagine a task in which the stu-
dent must program the robot to navigate a labyrinth. A very
specific case, such as following a straight corridor, could be

Figure 1: The automatic robot program evaluation system.

considered a unit test, and a complete task, such as navigat-
ing a given labyrinth, could be considered an end-to-end test.
Hence, we use the term test broadly, to refer to any kind of
simulation-based evaluation.

The robot program evaluation system is composed of a
test library, an evaluator, and a simulator. The test library
provides, for a given task, a set of tests. Each test consists
of one or more scenarios, and a function to compose the
scenario scores into a test score. A scenario is the unit of
simulation, it contains

• a description of the environment (walls, obstacles),
• a script describing the actions to perform during the

simulation, such as pressing a button on the robot
or moving an object in the environment,

• the name of a metric to compute the scenario score.
The metric evaluates the performance of the robot in a given
scenario; it is a function, over time, of the robot’s sensor
and motor values and its relation with its environment. The
evaluator simulates each scenario and computes test scores
using simulation results and the metrics from the library.

2.2 Didactic sequencing through gamified hints

Building on our program evaluation framework, we propose
a gamified hint system. A key decision is what amount of
information about the program quality to report to the stu-
dent and when. If too little is provided, the system brings
no benefit. If too much is provided, it would be detrimental
to learning, as students could superficially solve the problem
by following the hints rather than reasoning by themselves.
Moreover, they could also experience cognitive overload.

For a given task, such as navigating a labyrinth, our system
progressively displays hints indicating test results. A hint is
an image representing one test, with its background color
changing in function of the test outcome (see Figure 5). Hints
can be in three states: locked, unlocked or active.

• Active hints display how well the current program
performs at the corresponding tests. The background
can take 3 different colors: green, orange and red
corresponding to good, mediocre or bad test scores.

• Unlocked hints do not show the performance of the
tests, to push students to think by themselves.

• Locked hints are invisible, and the tests are not run.
A task is split into a list of levels, each containing one or more
hints, unlocked in order. The system maintains a current level.
Hints for higher levels are locked, hints for the current level
are unlocked, and hints for the lower levels are active.
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Hints are updated each time the student runs the program
on the real robot. A student passes to the next level when
her or his program is good at all tests (their scores are above
a threshold) up to and including the current level. Moreover,
after a given time, the next level is automatically unlocked,
regardless of the results of the tests.

3 IMPLEMENTATION

3.1 Thymio II, Aseba and VPL

We have implemented our robot program evaluation system
on the Thymio II robot and its visual programming envi-
ronment. The Thymio II robot [11] and its Aseba software
were created at the epfl, eth Zürich, and ecal. Both the
hardware design and the software are open-source.

The robot is small (11 × 11 × 5 cm), self-contained and
robust with two independently-driven wheels for differential
drive. It has five proximity sensors on the front and two
on the back, and two color intensity sensors on the bottom.
There are five buttons on the top, a three-axis accelerometer,
a microphone, an infrared sensor for receiving signals from a
remote control and a thermometer. For output, there are rgb

leds at the top and bottom of the robot, as well as mono-
colored leds next to the sensors, and a sound synthesizer.

The Aseba programming environment [6] uses the con-
struct onevent to create event handlers for the sensors. Vpl

is a component of Aseba for visual programming1. This work
branches from the development version of the tablet imple-
mentation, and runs on an Android tablet Nvidia Shield K1.
Figure 2 shows a vpl program for following a line of black
tape on a white floor. On the left is a column of event blocks

(buttons, proximity, ground color intensity, accelerometer,
microphone) and on the right is a column of action blocks

(motors, colors of the robot). By dragging and dropping one
event block and one or more action blocks to the center pane,
an event-actions pair is created. Both event and action blocks
are parametrized, enabling the user to create many programs
from a small number of blocks.

The vpl tablet prototype is implemented in Qt Quick2.
This allows writing the test library in a comfortable declara-
tive language, and the evaluator in JavaScript. The evaluation
itself is performed using the Enki simulator3. This simulator
is simple and fast yet accurate enough, and already supports
the Thymio robot. Moreover, Aseba provides a library for
embedding its virtual machine into Enki, allowing a seam-
less simulation of a valid Thymio program inside Enki. The
software used in the experiment is available on github4.

3.2 Gamified hints for labyrinth navigation

To evaluate our system, we have implemented hints for a task
in which students must program a robot to navigate inside a
labyrinth. The task consists in programming the robot such
that it traverses as much of the labyrinth as possible in 10

1https://www.thymio.org/en:visualprogramming.
2https://www.qt.io/qt-quick/
3https://github.com/enki-community/enki
4https://github.com/aseba-community/thymio-vpl2/releases/tag/iticse2017

Figure 2: The Thymio VPL tablet environment.

Figure 3: Labyrinth split into tiles of increasing score.

seconds. Figure 4f shows a picture of the labyrinth, which
consists of a tortuous corridor with a width of 20 cm.

To compute a score of a scenario, the labyrinth is split
into small tiles as shown in Figure 3. The score is given by
the furthest reached tile, with the distance of the robot to
the next tile taken into account to provide sub-tile precision.
To test the program in different environments of increasing
complexity, we create different tests and scenarios, starting
with simplified versions of the labyrinth. Each scenario is
simulated for a certain duration. If the robot has a high score,
it indicates that the program is correct for that scenario.
Only the score is available to the user through hints, the
simulation itself is hidden. There are 8 scenarios, organized
in 5 tests/hints, and unlockables in 4 different levels:

Hint 1: empty area, level 1 see Figure 4a
• scenario 1: going straight forward in an

empty arena, for 5 seconds.
As there is no tile in an empty area, this test
computes the score using the traveled distance.
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Hint 2: corridor, level 2 see Figure 4b
• scenario 2.1: following a corridor, starting

aligned to it, for 5 seconds.
• scenario 2.2: following a corridor, starting

unaligned to it, for 5 seconds.

Hint 3: left turn, level 3 see Figure 4c
• scenario 3.1: passing a left turn, starting

oriented to the left, for 7 seconds.
• scenario 3.2: passing a left turn, starting

oriented to the right, for 7 seconds.

Hint 4: right turn, level 3 see Figure 4d
• scenario 4.1: passing a right turn, starting

oriented to the right, for 7 seconds.
• scenario 4.2: passing a right turn, starting

oriented to the left, for 7 seconds.

Hint 5: labyrinth, level 4 see Figure 4e
• scenario 5: navigating in the complete

labyrinth, for 10 seconds.

Some hints have more than one scenario, to capture the
different conditions of the corresponding test. For example,
in the case of the left turn, a robot going straight forward
will achieve a different score between the two scenarios, as it
is initially oriented to the left in the first one. The score of a
hint is the average of the scores of all its scenarios.

We give the user a maximal duration to complete each
level, after which the system automatically passes to the
next one. This duration is set to 5 minutes, except for level
3 which lasts 10 minutes, and for level 5 which lasts until
the activity finishes. Figure 5 shows the system in action:
the user is currently at level 4 (labyrinth) and the last run
program obtained a mediocre score to the empty, left turn

and right turn tests and a bad score to the corridor test.

4 EXPERIMENT AND RESULTS

To measure the efficiency of gamified hints on performance
and learning, we ran a set of programming workshops for
two days over a week-end. Seven sessions of 75 minutes each
were proposed. Each session was composed of:

(1) Introduction (10 minutes): the robot and the tablet
software were introduced by a small demonstration.

(2) Discovery activities (10 minutes): four easy tasks
were given to the children.

(3) Labyrinth activity (30 minutes): children were asked
to program the robot to navigate in the labyrinth,
like shown in the Figure 4.

(4) Hand following activity (15 minutes): children were
asked to program the robot to follow their hand.

(5) Questionnaire (10 minutes): children were asked to
fill a questionnaire, similar to Magnenat et al. [8].

The workshops were attended by 43 children including 7
girls between 9 and 12 years, with 4 to 10 children per session
(average 6). No previous programming or robotics experience
was required, but 22 children had already used the Thymio

robot and 15 reported previous programming knowledge, of
which 11 had already used the robot. Children were provided
one tablet and one robot each and shared four labyrinths.
For the labyrinth activity, children were split into two groups,
each given a different configuration of the software:

• The Hints group (24 children, 12 previous Thymio
users, 8 with programming knowledge, 5 girls, ages:
9: 12, 10: 4, 11: 2, 12: 3) used the full system.

• The Control group (19 children, 10 previous Thymio
users, 7 with programming knowledge, 2 girls, ages:
9: 10, 10:1, 11: 6, 12: 2) used a restricted version in
which the levels were shown without indication of
program quality, and were passed only at the end of
their maximal duration.

Sessions Hints and Control were alternated during the
weekend to avoid any bias due to the different assistant
teams, their tiredness or their growing experience of the
setup. Other activities were done with the bare VPL software
for both groups, without providing any didactic sequence.
We had no control on which child joined which session.

One of the authors and five university students provided
assistance. The author was always present and the assistants
were distributed over the two days, such that there were
always two of them available. To avoid biases, the assistants
were combined into three different configurations, which all
supervised both types of sessions. Their role was to answer
questions, and, when a child was blocked, ask her or him a
related question to help progression and avoid frustration.

4.1 Research questions and results

Based on this experiment, we address 5 research questions
on the effects of providing hints:

Is it feasible to perform a real-time evaluation considering
the number of tests to run? We measure the time used to run
the simulations of all tests. On an Android Nvidia Shield
K1 tablet, the 8 scenarios, whose real-time durations add
up to 53 seconds, are simulated within ≈1 second, including
the computation of scores. Although the app freezes during
this second, it is acceptable as students are often looking
at the robot after clicking the run button. Therefore, we
demonstrated the concrete feasibility of our approach.

Does feedback allow students to write programs faster?
During the labyrinth activity, we measure the duration stu-
dents took to successfully solve each level (1 to 4). As the
Control group students could not pass levels before the end
of the maximal test duration, the time at which they reached
a level was recomputed offline during data analysis, using the
algorithm as used online for the Hints group. Children in the
Hints group took significantly less time than the ones in the
Control group to reach the different levels (Table 1a). Yet
one must be cautious as this result could be biased: children
in the Hints group were more pushed toward completing each
level, due to the fact that they could pass to the next level
if they succeeded at the test of the current level, which was
not the case for the Control group.
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a: b: c: d: e: f:

Figure 4: Different virtual environments used to test the labyrinth task (a to e); Real environment (f).

Figure 5: Hints in the Thymio VPL environment.

Does feedback allow more students to create better pro-
grams? During the labyrinth activity, we measure the best
achieved score for each level (1 to 5) separately. In the Hints
group, 95.65 % of children achieved all tests, against 52.36 %
for the Control group, a statistically significant difference
(Table 1b, p-value = 0.001).

Does feedback improve the building of transferable skills?
During the hand following activity, we measure the duration
students took to solve the task and the number of times they
run a program. We observe no significant differences between
the two groups (Table 1c). Therefore, we cannot answer this
question with this study, but it seems unlikely that there is
an improvement in transfer due to the hint system.

Does feedback improve the understanding of computer-science
concepts? The answers to the questionnaire are converted
into a grade, giving one point per correct answer. We see
that the error rate is similar for both groups (Table 1d), so
we cannot answer this question with this study. However, it
seems that the hint system has no significant effect on the
acquisition of computer-science concepts overall.

5 DISCUSSION AND LIMITATIONS

Our results might indicate that the scores obtained from
the robot programming task and the grades in the question-
naire measure two distinct competencies. Thus, we believe
that crossing the information from questionnaire assessment
and performance metrics can help to better understand and
assess the different programming abilities of students. Fur-
thermore, by combining our system with human tutoring
that focuses on theoretical and methodological foundations
of computer science, our system could provide a motivating
and stimulating playground to develop programming skills.

The proposed simulation framework is able to capture
extensive statistics about the development of a program,
including the evolution of program performance, the best
program achieved or the frequency of program production.

Level Hints Control p-value

Level 2 171 141 0.398
Level 3 336 553 0.014
Level 4 680 927 0.045
Level 5 961 1364 0.002

a. The mean level reaching time in seconds for the labyrinth
activity, and the p-value of Student’s t-test (H0: means are
equal), between the two groups.

Test Hints Control p-value

empty area 0.89 0.70 0.065
corridor 0.72 0.74 0.498
left turn 0.88 0.55 0.003
right turn 0.94 0.60 0.003
labyrinth 0.96 0.57 0.001

b. The mean best scores for each test of the labyrinth
activity, and the p-value of Student’s t-test (H0: means are
equal), between the two groups.

Metric Hints Control p-value

Number of runs 14.8 13.3 0.347
Task completion time 742 604 0.681

c. The mean number of runs and task completion time for
the hand following activity, and the p-value of Student’s
t-test (H0: means are equal), between the two groups.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Hints 0.42 0.00 0.05 0.32 0.00 0.63 0.32 0.11
Control 0.29 0.00 0.00 0.46 0.08 0.63 0.21 0.04
p-value 0.85 0.99 0.73 0.83 0.65 1.00 0.89 0.88

d. The error rate for Hints and Control groups; p-values of
Pearson’s chi-square test (H0: both conditions follow the
same distribution). n = Hints: 24, Control: 19.

Table 1: Quantitative results of the user study.

These statistics are useful for many different applications
that go beyond a hint system. A distinct advantage of our
solution over direct source code analysis is that our approach
is agnostic to the underlying programming language as all
metrics are based on the simulated behaviour of the robot.

From our qualitative observations during the experiments,
the gamified hint system seemed to increase the students
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involvement in the task. We observed that the performance
feedback provided by the hints prompted students for a more
critical assessment of their current solutions as they could
directly observe which previously passing tests were no longer
correct with their new solution attempt.

We have explored potential effects of factors such as gen-
der, previous programming knowledge or previous exposition
to Thymio, but could not draw relationships of similar im-
portance as the use of Hints. The only statistically significant
one is that children with previous programming knowledge
completed the labyrinth significantly faster than the ones
without (average 15 min 55 s against 21 min 32 s, p=0.026).

The main limitations of our work are the limited number
of participants (43), the simplicity of the hand following
task used to test transfer, and the short duration of the
workshop. All these factors must be improved to find an
answer to the unresolved questions of this paper. Moreover,
the current implementation of the simulator only simulates
a 2-D environment and its physics engine is simplistic. As
such, it is not applicable to flying robots, for example.

6 FUTURE WORK

A direct extension of our work would be to combine the results
obtained from the simulation with other data extracted from
the programming environment. For instance, we could count
the number of times a program is run on the robot or directly
analyze its source code. We believe that, with enough data,
it would be possible to automatically identify students who
are struggling with a given task.

We plan to investigate the effect of directly providing the
feedback from the hint system to teachers. Indeed, during
an informal survey after the experiment, several assistants
reported that it was easier to aid students when using the
hint system, as it gives a high-level overview of the capabili-
ties of their program. In addition, the progress made visible
by the hint system allowed assistants to quickly identify
students in need of guidance. Directly providing this feed-
back to educators through a tablet computer similar to the
work of Maldonado et al. [9] has the potential to facilitate
personalized interventions and improve learning.

7 CONCLUSION

In this paper, we presented an innovative way to guide stu-
dents learning to program using robots. We demonstrated a
gamified hint system based on the automatic assessment of
robot programs. Our system is able to evaluate programs in
real-time on a tablet device. By running the program in a
virtual machine inside a fast robot simulator, it can be tested
in different scenarios without affecting the user experience.

We ran a user study in which students had to program a
robot to navigate a labyrinth. We demonstrated that our hint
system increases the percentage of students writing correct
programs from 50 % to 96 %, and decreases the average time
to write a correct program by 30 %. However, our findings
on the effect on the learning outcome are inconclusive. We
could not show any transfer of programming skills to the new

task of following the hand. Moreover, we did not find any
correlation between the use of the system and the performance
of students on a questionnaire testing concept acquisition.

Additional studies considering more tasks and a longer
exposition to the system are needed to further investigate
the relationship between the user guidance and the acqui-
sition of computer science concepts. Nevertheless, the clear
performance improvement in the task where students were
guided shows the value of this approach for programming
education using robots.
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