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ABSTRACT
The extraction of student behavior is an important task in
educational data mining. A common approach to detect sim-
ilar behavior patterns is to cluster sequential data. Standard
approaches identify clusters at each time step separately and
typically show low performance for data that inherently suf-
fer from noise, resulting in temporally inconsistent clusters.
We propose an evolutionary clustering pipeline that can be
applied to learning data, aiming at improving cluster stabil-
ity over multiple training sessions in the presence of noise.
Our model selection is designed such that relevant cluster
evolution effects can be captured. The pipeline can be used
as a black box for any intelligent tutoring system (ITS). We
show that our method outperforms previous work regard-
ing clustering performance and stability on synthetic data.
Using log data from two ITS, we demonstrate that the pro-
posed pipeline is able to detect interesting student behavior
and properties of learning environments.
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1. INTRODUCTION
The extraction of student properties is a central element in
educational data mining. On the one hand, the identification
of student abilities and behavior patterns allows us to draw
conclusions about human learning. On the other hand, the
extracted properties can be used to improve the adaptation
of the underlying intelligent tutoring system (ITS).

Clustering of sequential data is a common approach to de-
tect similar behavior patterns and has been successfully ap-
plied to a variety of applications such as reading compre-
hension [22], online collaboration tools [24], table-top en-
vironments [19], web browsing [25], physics simulations [4]
or homework assignments [11]. Furthermore, a variety of
different student behavior has been investigated. [20] identi-
fied students that impose challenges for the student models.
Other work studied the relation between interaction patterns
and the performance of students [3, 14] and the relation be-
tween student action sequences and their affective states [3].

Common techniques for the analysis of sequential data in-
clude sequence mining [1, 19], differential pattern mining [11]

or Hidden Markov models (HMM) [5, 6]. Sequential pat-
tern mining techniques have been contextualized using piece-
wise linear segmentation [14]. Others have employed semi-
supervised graph clustering using the predictions from a
student model as additional constraints [20]. Clustering
sequential data employing similarity measures on state se-
quences was used in [4, 8]. These state sequences can be
aggregated into Markov Chains modeling the state tran-
sitions [17]. HMM have been employed to extract stable
groups from temporal data by joint optimization of the model
parameters and the cluster count [18].

While the previous work discussed above analyze student
clusters at a given point in time, a temporal analysis would
allow to identify how interaction patterns change over time
and how groups of similar students evolve. Temporal effects
of cluster evolution have been analyzed in [15], based on
static clustering at each time step. Static approaches are
sensitive to noise in the data and may result in temporally
inconsistent clusters. Evolutionary clustering methods [7]
address this problem as they consider multiple subsequent
time steps. The temporal smoothing increases the resulting
cluster stability notably and allows for a better analysis of
the clusters, i.e., the student properties and interaction pat-
terns. Recently, an evolutionary clustering approach called
AFFECT [27] has been introduced that smooths proximities
of students over time followed by static clustering. AFFECT
was shown to outperform static clustering algorithms.

In this paper, we present a complete processing pipeline for
evolutionary clustering that can be used as a black box for
any ITS. We incorporate a variation of the AFFECT method
into our pipeline and demonstrate that temporal smoothing
has beneficial properties for extracting student behavior and
groups from educational data. We propose several exten-
sions of the original method tailored towards learning data.
Our approach is articulated in four steps. In a first step, we
extract action sequences from ITS log data and aggregate
them using Markov Chains. We show that the Markov Chain
representation of the actions is superior to direct sequence
mining techniques [4, 17] with respect to noise cancellation
and the ability to identify groups of students with similar
behavior. The second step consists of computing pairwise
similarities between the Markov Chains. While the proposed
pipeline provides flexibility in the choice of similarity mea-
sure, the Hellinger distance outperforms other metrics that



are frequently used in the educational data mining litera-
ture [4, 17]. Based on the obtained similarities, evolutionary
clustering [27] is performed in the third step. The temporal
aspect of the student data leads to changing behavior pat-
terns, i.e., we expect the number of clusters and cluster sizes
to change over time. Therefore, capturing cluster evolution
events, such as merging, splitting, dissolving and forming of
clusters, is crucial in order to analyze sequential data. To
capture these events automatically, we compute the optimal
cluster count for each time step using the AICc criterion.

Using synthetic data, we demonstrate that our method ex-
hibits a higher performance and is more robust to noise than
previous work [4, 17]. We further show that our pipeline is
able to extract stable clusters over time and reliably detects
all cluster events. In an exploratory analysis on real-world
data, we apply our pipeline to log data from two differ-
ent ITS: One for spelling learning and one for mathematics
learning. Finally, we present a set of visual tools that are
powerful to analyze temporal data and student clusters.

2. METHOD
Our method for student clustering is designed to address two
challenges when clustering temporal data. First, the method
provides temporally consistent clusters. Second, our pipeline
is able to capture changes in cluster sizes as well as in the
number of clusters. Four cluster events are of particular in-
terest in the context of educational data mining: merging,
splitting, dissolving and forming of clusters. If the behavior
of students from two different clusters becomes more simi-
lar over time, we expect the clusters to merge (this could
mark a training effect). If on the other hand the behavior
of students in a cluster sufficiently diverges clusters might
split (this could mark the development of different learning
strategies). If a distinct behavior disappears within a group
of students, we assume the cluster will dissolve, meaning stu-
dents will uniformly change to other clusters. In contrast,
forming clusters have the potential to mark the development
of distinct strategies within students.

The resulting clustering pipeline addressing these challenges
is illustrated in Figure 1. The only input required are action
sequences extracted from student log data. These action se-
quences are transformed into Markov Chains for every ses-
sion and pairwise similarities between these chains are com-
puted. Students are clustered based on these similarities
while enforcing temporal consistency over consequent train-
ing sessions. Finally, we compute the optimal number of
clusters for each training session.

Action Sequences. In a first step we extract action se-
quences Atu = (a0, a1, . . . , an) for every session t of a user
u. To do so, we map events in the log files of an ITS (e.g.
correct/incorrect inputs or help calls) to the actions ai. As
the particular actions depend on the ITS, the extraction of
actions has to be changed depending on the ITS.

Action Processing. While action sequences provide rich
temporal information about the exact ordering of actions,
we expect that they exhibit a considerable amount of noise.
We therefore transform the action sequences into an aggre-
gated representation using Markov Chain models, similar
to [17]. Markov Chains provide an aggregated view of the
pairwise transition probabilities of actions and can be fully
described by these transition probabilities ti,j := paj |ai from

any state ai (in our case an action) to any other state aj .
Markov Chains can be extracted using maximum likelihood
estimates of the transition probabilities ti,j .

Similarity Computation. To cluster student behavior, a
suitable similarity (or distance) measure between students
has to be defined. In educational data mining, popular
choices for measuring distances between action sequences
are the longest common subsequence (LCS) and the Leven-
shtein distance (see e.g. [4]). LCS measures the length of
the largest set of characters that appear in left-to-right or-
der within the string, not necessarily at consecutive places.
The Levenshtein distance computes the number of inser-
tions, deletions and replacements needed to transform one
string into the other. Instead of computing distances di-
rectly on action sequences we can apply the computation to
the aggregated values of Markov Chains. Previous work [17]
has been using the Euclidean distance between the transi-
tion probabilities of two Markov Chains. A potential disad-
vantage of the Euclidean distance is that it is not designed
for the comparison of probabilities. Therefore, we propose
to use metrics that are specifically designed for comparing
probability distributions. Since the conditional probabilities
describing a Markov Chain do not form a proper probability
distribution (the entries of the transition probability matrix
do not sum up to one), we compute the expected transi-
tion probabilities using the stationary distribution over the
actions and compare these expected transition frequencies
t̄i,j instead of the conditional probabilities ti,j . We use two
common metrics: the Jensen-Shannon Divergence and the
Hellinger distance [21] to compute the distances between the
expected transition frequencies t̄i,j of the Markov Chains.

Clustering. Using the measures defined above we com-
pute a pairwise similarity matrix W t for every session t of
the training (entries of the matrix measure how similar two
students are during that particular training session). These
similarity matrices can then be clustered by any standard
clustering method. However, clustering students for each
session individually does not make use of the temporal in-
formation available. Recently, a method for clustering evo-
lutionary data has been proposed that accurately tracks
the time-varying similarities of objects over discrete time
steps [27]. The method assumes that the observed simi-
larities W t are a linear combination of the true similarity
between students Ψt and random noise N t:

W t = Ψt +N t. (1)

Instead of performing clustering directly on W t, a smoothed
similarity matrix Ψ̂t is proposed, given as

Ψ̂t = αtΨ̂t−1 + (1− αt)W t, (2)

where αt controls the amount of smoothing applied to the
observed similarity matrix W t. Under some assumptions
(detailed in [27]) an optimal choice for αt is

αt =

∑
i

∑
j var(ntij)∑

i

∑
j (ψ̂t−1

ij − ψtij)2 + var(ntij)
. (3)

This means that the optimal αt is based on a trade-off be-
tween the estimated noise in W t and the amount of new in-
formation that W t contains compared to previous similarity
matrices. If W t exhibits a lot of noise we more heavily rely
on previous observations (high αt) but if we observe large
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Figure 1: Overview of our clustering pipeline. Action sequences are extracted from log data and transformed
into Markov Chains per session. Pairwise similarities between students are computed for every session.
Clustering is performed using evolutionary clustering [27]. Finally, the AICc criterion selects the best model.

discrepancies between the previous similarity estimates and
the current ones (e.g. some students show a novel behav-
ior) we emphasize the similarities from the current session
(low αt). Finally, we use the standard clustering algorithm

K-Means to cluster the smoothed similarity matrices Ψ̂t.

Model Selection. The assumption of temporal consistency
in the pairwise similarities between students does not pro-
hibit evolution of clusters if students change their behavior
over the course of the training. Such long-term drifts lead
to growing and shrinking of clusters eventually, and even to
dissolving and forming of clusters over time. In contrast to
the original AFFECT method [27], we therefore compute
the optimal number of clusters in every time step. Deciding
on the number of clusters is a variant of the model selec-
tion problem, for which various different criteria exists. The
Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) are among the most common criteria
for model selection. The main difference between BIC and
AIC is that the BIC penalizes the number of clusters more
strongly than AIC. AICc corrects the AIC criteria for finite
sample sizes. For our experiments, we used AICc as it po-
tentially reveals more clusters, which is important for our
exploratory analysis of learning data. To compute the AICc
the log likelihood (LL) of the model is needed. According
to [23], the LL for K-Means can be formulated as

LL =
∑
i

log(
Nc(i)
N

φ(xi|µc(i), σ)), (4)

where N denotes the number of samples, c(i) the cluster
index of sample xi and Nc(i) the number of samples in clus-
ter c(i). The likelihood of a sample xi that was assigned
to cluster c(i) can be computed using the probability dis-
tribution φ(xi|µc(i), σ), where µc(i) denotes the centroid of
the cluster and σ the empirical variance of the data. In our
case (as suggested by [23]), the probability distributions φ
are identical spherical Gaussians. To compute the LL, we
embed our data points in a Euclidean space in which the dis-
tances between the points match the similarities extracted
from the action sequences. To perform this embedding, we
use the method presented in [12] that transforms N objects
with pairwise similarities to a D = N − 1 dimensional Eu-
clidean space.We then estimate the effective dimensionality
D̂ of our data set as the sum of eigenvalues λi of the covari-
ance matrix divided by the largest eigenvalue λ1 (see [16]):

D̂ =
∑
i λi/λ1. This means that the effective number of

parameters P for the K-Means clustering is P = (D̂ + 1)k,
where k is equal to the number of clusters (see e.g. [23] for
a derivation). Based on the LL and the estimated effec-

tive dimensionality of our data D̂, we calculate the AICc as
−2LL+ 2P + (2P (P + 1))/(n− P − 1).

3. SYNTHETIC EXPERIMENTS
We analyzed the properties of our clustering algorithm us-
ing synthetic data and we compared the performance and
stability of our method to previous algorithms for clustering
sequential educational data. Finally, we also validated our
model selection step.

Experimental setup. We simulated student actions for
80 students over 50 sessions in a simulated learning environ-
ment. Students needed to solve 20 tasks per session. Student
abilities θ and task difficulties d were simulated as part of
a Rasch model [26]. Student abilities for all students were
sampled from a normal distribution with mean µ and vari-
ance σ. Task difficulties were sampled uniformly from the
range [−3, 3] in agreement with the common range of task
difficulties [10]. Each task y consisted of eight steps sj that a
student had to complete to finish the task (this could e.g. be
letters of a word to spell, performing steps of a calculation
or solving a physics problem). The probability of a student
correctly solving a task was then given by the Rasch model
as p(y) = (1 + e−(θ−d))−1. In our simulation (in accordance
with many ITS) a task was correctly solved if all the sub-
steps are correctly solved, which defines the probability of

correctly solving a step of a task sj to be p(sj) = (p(y))
1
8 .

Finally, a student could request help at any point in time
during the training. Whether the student asked for help
was sampled from a Bernoulli distribution with pH . Based
on the described sampling procedure we emitted the follow-
ing actions for a student: new task, help, correct, incorrect,
correction, task completed. The number of sampled actions
per student and session depended on the performance of the
student (e.g. a student who gets every step of a task cor-
rect completes a task after eight correct actions, whereas
another student who requests help and commits an error
requires more actions to complete the task).

For our experiments we simulated student groups with dif-
ferent behavior. For the chosen range of task difficulties,
student abilities are found to be normally distributed with
mean µ = 0 and variance σ = 1 (see [10] for details). We
simulated good performing students by setting θ = 1 and
bad performing students by setting θ = −1. According
to [2], the most frequent form of help abuse are multiple
consecutive help requests. We simulated this behavior by a
large probability pH = 0.2 to ask for help instead of work-
ing on the task, while normal help seeking behavior has a
smaller probability for requesting help pH = 0.05. Based on
these different properties we simulated four groups of 20 stu-
dents as follows. Group A contains bad performing students
(θ = −1) that rarely ask for help (pH = 0.05). Group B con-
sists of bad performing students (θ = −1) that frequently
use the help system (pH = 0.2). Group C and D consist of
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Figure 2: Comparison of clustering methods over increasing noise levels (left) and over different numbers of
clusters for fixed noise levels σ = 2 (middle) and σ = 8 (right). Our method (Ours HD, Ours SD, Ours EUC)
shows less degradation of clustering quality (agreement with ground truth) for increasing noise levels.

good performing students (θ = 1) with rare (pH = 0.05) and
frequent (pH = 0.2) help requests, respectively.

Our proposed pipeline offers flexibility in the choice of the
similarity measure (see Section 2). We used the Jensen
Shannon divergence [21], the Hellinger distance [21] and the
Euclidean distance for our experiments, and refer to these
approaches as Ours SD, Ours HD, and Ours EUC. To mea-
sure the influence of the different elements of the pipeline on
the overall performance, we compared the proposed method
to previous work on clustering of action sequences. The
first approach [4] works directly on the action sequences and
uses the longest common subsequences (LCS) as similarity
measure. Clustering is performed using an agglomerative
clustering. However, to be able to better compare cluster-
ing results we used the proposed similarity measure together
with K-Means. We refer to this pipeline as LCS KM. Sim-
ilar to our method, the second approach used for compar-
ison [17] computes the similarities between students using
Markov Chains. Similarities are measured using the Eu-
clidean distance and clustering is performed using K-Means.
The pipeline for this approach is denoted by MC EUC KM.

Clustering Quality & Robustness. In a first experi-
ment, we computed the clustering quality of the different
approaches with increasing noise levels. The performance
P was measured using the cluster agreement in compari-
son to the ground truth labels. The different noise levels
were simulated by increasing the variance in student abil-
ities σ for the sampling of the data. Figure 2 (left) illus-
trates the performance of the different approaches with in-
creasing noise. Note that the performance was computed
using the correct cluster count of k = 4. Our pipeline (col-
ored in green, red, and brown) exhibits the highest perfor-
mance over all noise levels. The average agreement of our
best performing pipeline (POurs HD) is substantially higher
than the average agreement of the best previous approach
(PMC EUC KM ), both for a low variance (POurs HD,σ=1 =
0.82, PMC EUC KM,σ=1 = 0.53) and for noisy data
(POurs HD,σ=10 = 0.45, PMC EUC KM,σ=10 = 0.34).

To investigate these differences between the approaches, we
measured their performance over different numbers of clus-
ters at preset noise levels. Figure 2 (middle) illustrates the
results for data with a relatively low noise level (σ = 2),
while Figure 2 (right) shows the clustering quality of the
different pipelines on noisy data (σ = 8). In the case of
small noise in the data, all methods exhibit the best per-
formance for the correct number of clusters (k = 4), which

is a desirable property. The results demonstrate that us-
ing Markov Chains (PMC EUC KM,k=4 = 0.44) instead of
working directly on action sequences (PLCS KM,k=4 = 0.40)
leads to a higher clustering quality. A further increase in
performance is achieved by our proposed algorithm: The
variations of our pipeline exhibit a substantially higher clus-
tering quality (POurs EUC,k=4 = 0.66, POurs HD,k=4 = 0.70,
POurs SD,k=4 = 0.70) than the previous work. This sub-
stantial increase in performance (∆Pk=4 = 0.26 compared to
MC EUC KM) is due to two changes in the pipeline. First,
the proposed pipeline uses the AFFECT method for cluster-
ing leading to an increase in performance of ∆Pk=4 = 0.20.
Second, while MC EUC KM computes the similarity mea-
sure directly on the transition probabilities, we use the ex-
pected transition probabilities as a basis for the similarity
computations (see Section 2) accounting for an improve-
ment in performance of ∆Pk=4 = 0.06. Within our ap-
proach, the choice of similarity measure has only a small
impact on the clustering quality. Figure 2 (right) demon-
strates that our proposed method is more robust to noise
than previous work [17, 4]. The best variation of our pipeline
(colored in green) still achieves a reasonable performance
(POurs HD,σ=8 = 0.54). At these noise levels, the choice
of action processing (Markov Chains vs. direct processing
of action sequences) does not significantly influence perfor-
mance (PLCS KM,k=4 = 0.34, PMC EUC KM,k=4 = 0.35).
The choice of the clustering algorithm on the other hand is
important. The increased performance of our method can be
attributed to the use of AFFECT for clustering: AFFECT
takes into account data from previous time steps to perform
the clustering. Interestingly, the pipeline using the Jensen
Shannon divergence (Ours SD) seems less robust to noise
than the other pipelines (Ours HD and Ours EUC).

Stability. When clustering student actions over time, tem-
poral consistency of clusters is essential. We measured the
temporal stability of our method by computing the clus-
ter size over the 50 simulated sessions (see Figure 3). We
compared the best performing pipeline from the first exper-
iment (Ours HD) to the previous approaches (LCS KM ,
MC EUC KM) using again k = 4 clusters. As can be
seen from Figure 3 (left), our method provides a smooth
temporal clustering with stable cluster sizes over time. The
clusters found by MC EUC KM (Figure 3 (middle)) and
LCS KM (Figure 3 (right)), on the other hand, are unsta-
ble: cluster sizes vary significantly over time. These results
are as expected, as static clustering approaches identifying
groups of students at each point in time are very sensitive to
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Figure 3: Relative cluster sizes (for k = 4 clusters) over 50 simulated sessions. Our method performs best in
extracting temporally stable clusters.

noise. The proposed method solves this problem by apply-
ing an evolutionary clustering algorithm and therefore takes
into account multiple time steps.

Interpretability. Since we are clustering student behav-
ior over multiple sessions, we expect the number of clusters
and the cluster sizes to change over time. We expect clus-
ters to merge, split, dissolve and form (see Section 2 for
details). We evaluated the Ours HD pipeline on four sce-
narios using synthetic data. Note that these scenarios are
artificial and are used only to demonstrate that the pipeline
can capture the described events; we will show real-world
examples of these events in Section 4. In the first scenario
(Figure 4 (top left)), group A consisting of bad performing
students with rare help calls (colored in dark green) merges
into group B (colored in dark blue), i.e. the students of
group A also start abusing the help. In our simulation, we
start the cluster merge after t = 20 sessions and let group
A completely vanish after t = 50 sessions, a behavior that is
nicely captured by our method. The second scenario (Figure
4 (top right)) starts with only three groups (B, C, and D),
assuming that all bad performing students frequently use
the help. Over time, the bad performing students split into
a group abusing the help (group B, colored in dark blue) and
a cluster consisting of students with rare help calls (group
A, colored in dark green), i.e. in the simulation some of the
bad performing students stop abusing the help over time. In
the third scenario (Figure 4 (bottom left)) a dissolving clus-
ter is simulated: Over time, group B (colored in dark blue)
completely dissolves and the students are distributed to the
other three clusters. The fourth scenario (Figure 4 (bot-
tom right)), finally, simulates a forming cluster event. The
simulation starts with only three clusters (groups A, C, and
D). With an increasing number of sessions, a fourth cluster
forms (group B, colored in dark blue) and students from the
other three clusters slowly switch to the new cluster until all
the groups have equal size (after t = 50 sessions). This event
is again correctly captured by our method. The presented
experiments demonstrate that the proposed pipeline is able
to reliably identify changing cluster numbers and sizes. The
results also demonstrate the validity of the model selection
step of the pipeline: The AICc correctly identifies the num-
ber of clusters for all scenarios.

4. EXPLORATORY DATA ANALYSIS
We applied our method to clustering of student interactions
from two different ITS, focusing on the identification and
interpretation of cluster events.

Experimental Setup. The first data set contains log data
from 106 students and was collected using Orthograph, a
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Figure 4: Simulated examples of four types of clus-
ter events. Our pipeline correctly identifies cluster
merges/splits as well as dissolving/forming clusters.

computer-based training program for elementary school chil-
dren with dyslexia [9]. Orthograph consists of one main
learning game, where children have to type a dictated word.
The second data set contains data from 134 students and
was collected from Calcularis, an ITS for elementary school
children with difficulties in learning mathematics [13]. Cal-
cularis consists of different games for training number rep-
resentations and calculation. For all students, we extracted
the first 15 training sessions with a minimal duration of t = 5
minutes from each student.
All results have been computed using our pipeline Ours HD
(see Section 2), applying the Hellinger Distance to measure
similarities between Markov Chains of different students.

Navigation Behavior. In a first experiment, we extracted
actions describing the Navigation Behavior of children in
Orthograph. Navigation Behavior captures all events that
cause the displayed content to change. During game play,
children collect points for correct responses as well as for
time spent in the training in general. These points can be
used to buy different visual perks for the game in the shop.
Children can also analyze their performance (e.g. progress
in the current module) in the progress view. The resulting
Markov chain (see Figure 5) consists of three possible states:
Game, Shop, and Performance.

Figure 6 shows the relative cluster sizes for the Navigation
Behavior Markov Chain over the first 15 sessions of the
training. The different colors denote different clusters. At
the beginning of the training (t = 0), our pipeline detects
seven different clusters, however, three of these clusters (col-
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ored in pink, brown, and orange) die within the first three
training sessions. Children in these clusters spent more than
50% of their time browsing the shop and checking their per-
formance (orange: 46% Game, 31% Shop, 23% Performance;
brown: 43% Game, 22% Shop, 35% Performance; pink: 40%
Game, 32% Shop, 28% Performance) at the beginning of the
training. We therefore hypothesize that children in these
clusters tried out and played with the different views before
getting used to the navigation possibilities of the system.

After t = 5 time steps, a further cluster (colored in green)
dissolves before the clustering stabilizes to three main groups
(colored in blue, red, and purple). Figure 7 (top) shows the
transition probabilities of the Markov Chains for the differ-
ent clusters before the clusters dissolve (after t = 3 sessions).
Children in the blue cluster are very focused on training,
they spend 82% of their time in the Game. Once in the
Shop or Performance state (18% of their time) they tend to
select the following view with equal probabilities. Children
in the red cluster like to browse the shop, a behavior that
is visible from the high transition probabilities to the Shop
state (Game→Shop: 0.41; Performance→Shop: 0.39), re-
sulting in 34% of the training time spent browsing the shop.
The purple cluster consists of children, who like to navigate
to the shop and performance overview between solving the
different tasks (Game→Shop: 0.41, Game→Performance:
0.44). However, these tend to be shorts visit as they will
return to playing the game right after with high probability
(Performance→Game: 0.58, Shop→Game: 0.77). Finally,
children in the green cluster tend to select the next view
randomly when playing the game. Once in the Performance
state, they have a probability of 0.30 to browse the shop
right after. The analysis of this time step illustrates that the
different clusters differentiate well between focused children
not making use of the navigation possibilities (blue cluster),
children who frequently (but reasonably) use the different
views (purple and green cluster), and distracted children
who spend long amounts of time off-task (red cluster).

After t = 6 training sessions, the green cluster dissolves and
students from this cluster change to the red and blue clus-
ters. The transition probabilities of the Markov Chains for
these stable main clusters are illustrated in Figure 7 (bot-
tom). The children in the blue cluster are still focused on
training, spending 76% of their time solving tasks. However,
they also check their training progress from time to time
(14% of the time spent in the Performance state). After
checking training progress, they tend to also browse the shop
(Performance→Shop: 0.27). The children in the purple
cluster have stopped navigating to the performance overview
between different tasks (Game→Performance: 0.17) and in-
stead visit the shop more frequently (Game→Performance:
0.58) and longer (35% of time spent in the Shop state). The
red cluster still consists of children who like browsing the
shop, a behavior that is visible from the high transition
probabilities to the Shop state (Game→Shop: 0.33; Per-
formance→Shop: 0.31). However, they also tend to spend
time checking their progress, resulting in 47% of the training
time spent off-task. Students from the green cluster there-
fore changed their behavior from frequent, but short off-task
navigation to a more focused training style (change to blue
cluster) or to being completely distracted and spend long
amount of times off-task (change to the red cluster).

Input & Help Seeking Behavior. Our method can be
used as a black box for any ITS and therefore also allows for
comparison of behavior patterns across different ITS. The
only user input needed is the definition of possible actions.
To illustrate this possibility, we extracted two different sets
of actions Input Behavior and Help Seeking Behavior from
data collected with Orthograph and with Calcularis.

Input Behavior captures all possible inputs. Implicitly these
actions capture the performance of students, as e.g. a bad
performing student is likely to commit more mistakes. In
Orthograph, children train spelling by writing words that are
played back by the system. Therefore, the Input Behavior
Markov Chain for Orthograph (see Figure 8) consists of four
states: Children can type a letter (Input), correct themselves
by deleting a letter (Backspace), provide invalid input such
as typing a number (Invalid Input), or submit their solution
(Enter). For Calcularis, we investigated calculation games.
In these games, children need to solve different mental ad-
dition and subtraction tasks. We again define four states
for the Input Behavior Markov Chain (see Figure 8): chil-
dren can type a digit (Input), correct themselves by deleting
a digit (Correction), provide invalid input such as random
mouse clicks (Invalid Input), or set their answer (Enter).

Figure 9 shows the relative cluster sizes for the Input Be-
havior action set from Orthograph over 15 training sessions.
Our method identifies three stable clusters. Investigating
the stationary distributions of the Markov Chains reveals
that students in the orange cluster show the highest proba-
bilities for committing invalid inputs over all sessions (t=3 :
0.15; t=7: 0.23; t=13: 0.16). The green cluster consists of
focused students who consistently produce a low percentage
of invalid inputs (t=3: 0.06; t=7: 0.04; t=13: 0.05). Stu-
dents in the blue cluster also tend to show low probabilities
for invalid inputs across the different sessions (t=3: 0.11;
t=7: 0.09; t=13: 0.08). The orange cluster is an example
of a forming cluster growing in size over the course of the
training. We hypothesize that this event marks the increas-
ing difficulty of the tasks and is caused by a downwards drift
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of students from the clusters with good performing students
to the clusters with students showing worse performance.
Further analysis of cluster transfers reveals that students
indeed are never switching directly from the green (best per-
formance) to the orange cluster (worst performance).

For Calcularis, the Input Behavior clusters are relatively sta-
ble over the course of the training (see Figure 9). There is
one distinct dissolve event in the first four sessions: the or-
ange cluster is dissolving into the blue and green clusters. In-
vestigating the stationary distributions of the Markov chains
of the three clusters reveals that all clusters have a relatively
low probability for invalid inputs (t=2: 0.17 (blue), 0.12 (or-
ange), 0.08 (green)). However, students belonging to the
blue cluster tend to perform multiple consecutive corrective
actions in a row (Correction→Correction: 0.25 (blue), 0.13
(orange), 0.13 (green)). Students in the orange cluster are
most likely to enter a valid input after a correction (Correc-
tion→Input : 0.68 (orange), 0.57 (blue), 0.65 (green)).

In Orthograph, differences in Input Behavior are mainly ex-
pressed by the percentage of invalid inputs provided. We
observe a more distinct picture for Calcularis. While the
invalid inputs are still an important indicator, children also
exhibit different corrective behaviors.

Help Seeking Behavior captures the use of hints available
in the training environment. In Orthograph, children can
re-play the given word (Hear Word), play the melody of
the word (Play Music) and show the correct spelling of the
word (Show Word). The according Markov Chain is dis-
played in Figure 8. The states New Task and Input denote

the play-back of a new word and a user input (keyboard),
respectively. The development of the relative cluster sizes
for these action sequences (see Figure 9) reveals a surpris-
ingly large variance in student behavior (the clustering al-
gorithm finds nine different clusters in the first two training
sessions). However, the diversity in student behavior disap-
pears through a large cluster merge after t=3 sessions. In-
vestigating the transition probabilities between the different
actions, we observe that while students are experimenting
with the three different help systems at the beginning of the
training, the final cluster of students gave up on using the
help functions. This drop in the frequency and diversity of
help usage indicates that the help functionality provided in
Orthograph is not useful for most of the students.

Calcularis provides a limited help functionality. Children
can require explanations for games (Help). Furthermore,
they can directly require the solution of a task (Empty), if
the task seems too difficult. Further states of the Markov
Chain (displayed in Figure 8) are the setting of a complete
answer (Regular) and the abortion of a task (Incomplete).
We again observe a large cluster merge at the beginning of
the training leading into two stable clusters. Investigating
the stationary distributions of the Markov Chains of the two
clusters reveals that students in the orange cluster are more
likely to perform a help request compared to the blue cluster
(t= 6: 0.03 (blue), 0.13 (orange)).

The Help Seeking Behavior of the children is more difficult
to compare across different ITS, because the available hints
are very different. However, our experiment shows that both
learning environments do not provide ideal help options.
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Figure 9: Relative cluster sizes over the first 15 sessions based on the clustering of Input Behavior (left) and
Help Seeking Behavior (right) for students training with Orthograph and Calcularis.

5. CONCLUSIONS
We presented a complete pipeline for the evolutionary clus-
tering of student behavior. This pipeline can be used as a
black box for any ITS, requiring only the extraction of ac-
tion sequences as input. We demonstrated that enforcing
temporal coherency between consecutive clusterings is ben-
eficial for the detection of student behavior as well as the
stable detection of cluster events. Our method outperforms
previous work on synthetic data regarding clustering quality
and stability. We applied our pipeline to different types of
action sequences collected from two different ITS. The ex-
ploratory analysis demonstrates that our method is able to
reveal interesting properties about the behavior of students
and potential deficiencies of the learning environments.
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