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Figure 1: Example-based materials allow the simulation of flexible structures with art-directable deformation behavior.

Abstract

We propose an example-based approach for simulating complex
elastic material behavior. Supplied with a few poses that character-
ize a given object, our system starts by constructing a space of pref-
ered deformations by means of interpolation. During simulation,
this example manifold then acts as an additional elastic attractor
that guides the object towards its space of prefered shapes. Added
on top of existing solid simulation codes, this example potential ef-
fectively allows us to implement inhomogeneous and anisotropic
materials in a direct and intuitive way. Due to its example-based
interface, our method promotes an art-directed approach to solid
simulation, which we exemplify on a set of practical examples.
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1 Introduction

Different materials deform in different ways. Therefore, physically-
based animations offer control of material properties as a way of
controlling the final deformation. But in creative applications such
as computer animation, material properties are just middlemen in a
process that really focuses on obtaining some desired deformation.

Indeed, we can flip the causality between materials and deforma-
tion: when we witness the deformation of an object, we implicitly
draw conclusions about its underlying, constitutive material. By
controlling the deformation of an animated object, we can imply
complex material behaviors. Therefore, if we can expand the reper-

toire of possible deformations of an object, we can broaden the ex-
pressive palette available for physics-based computer animation.

The computational mechanics literature already describes many
mathematical models for myriad materials, alas these models are
intended for problems where material coefficients are easily quan-
tified (e.g., from measurements). In artistic endeavors, we typically
envision a desired deformation (the material properties are, to some
extent, an afterthought — just a means to an end). Yet quantifying
material coefficients that lead to a desired deformation behavior is
difficult if not impossible. Indeed, just choosing a mathematical
model can be daunting. Simpler models offer few coefficients but
a small expressive range, while complex models have an unwieldy
set of parameters.

Contributions Inspired by example-based graphical methods
(for texture synthesis [Wei et al. 2009], rigging [Li et al. 2010],
mesh posing [Sumner et al. 2005]), we present an intuitive and di-
rect method for artistic design and simulation of complex material
behavior. Our method accepts a set of poses that provide exam-
ples of characteristic desirable deformations, created either by hand
(digitized from clay sculptures), with a modeling tool, or by taking
3D “snapshots” of previously run simulations. With these examples
in hand, we provide a novel forcing term for dynamical integration
that causes materials to obey the “physical laws” implied by the
provided examples (see Fig. 1).

Our approach can be applied to “upgrade” any existing time inte-
gration code by incorporating three novel components:

• Interpolation: instead of restricting ourselves to individual
poses, we construct a space of characteristic shapes by means
of interpolation. We quantify the deformation of the example
poses using a nonlinear strain measure. This Strain Space
provides a rotation-invariant setting for shape interpolation —
and the interpolated examples define a subspace of preferable
deformations.

• Projection: having defined the space of preferable deforma-
tions, we can project configurations onto it by solving a min-
imization problem. Given an arbitrarily deformed pose, we
can thus compute its closest point on the example subspace.

• Simulation: combining interpolation and projection, we can
define an elastic potential that attracts an object to its space
of preferable deformations. At each step of an animation, we
first extract the point on the example space that is closest to the
current configuration. Using this point as an intermediate rest
configuration, we compute forces that pull the system toward
the example space.
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Applications The matrimony of example-based simulation and
computational mechanics opens a multitude of exciting applica-
tions. Our method offers an intuitive way to design materials with
desired deformation behavior. Instead of having to deal with un-
wieldy material descriptions, the artist can get straight to the point,
specifying examples of the desired outcome. Although our formu-
lations build on solid mechanics, we can also mimic the behavior of
more complex models such as thin shells. We can embed a surface
or curve into a volumetric mesh, which is then deformed such that
the embedded geometry assumes the desired shapes. This enables
us to control the deformation behavior of shells in very much the
same way as for solids.

2 Related Work

Material models describe the connection between geometric de-
formations and resulting forces — they govern the way in which
objects deform and are thus fundamental to every simulator. Ever
since the groundbreaking works of Terzopoulos et al. [1987; 1988],
extending the expressive range of materials towards elasticity [Irv-
ing et al. 2004], plasticity and viscoelasticity [Bargteil et al. 2007]
or fracturing [O’Brien and Hodgins 1999] has been a primary fo-
cus. Though accurate, these conventional material models offer
only limited and unwieldy control which is in opposition to the cre-
ative thinking of animators. Bickel et al. [2009] describe an inter-
esting alternative for learning material properties from experiments,
but most artistic materials do not have a real-world counterpart that
could be subject to such measurements. Nevertheless, deducing a
material description from given target deformations is a powerful
concept. We follow this idea and employ examples of desired de-
formations to directly construct an elastic potential. Our method
can be interpreted as a means of describing strongly anisotropic,
heterogeneous and nonlinear materials. But while it is easy to de-
sign a set of example poses, defining a corresponding material law
is a formidable task.

Directing animations is of paramount importance for setting
bounds to otherwise uncontrolled physics in practical scenarios.
Many methods have been proposed for this purpose, including ex-
plicit control forces [Thürey et al. 2006], space-time constraints
[Witkin and Kass 1988; McNamara et al. 2004; Wojtan et al. 2006;
Barbič et al. 2009] or tracking approaches [Kondo et al. 2005;
Bergou et al. 2007; Barbič and Popović ]. Similar goals are pursued
by methods for editing animations [Popović et al. 2000; Kircher
and Garland 2006] or sampling of probable animations [Twigg and
James 2007]. Our approach resembles existing approaches in that
it also induces additional forces into the simulation. A striking dif-
ference is, however, that these forces derive from a conservative
potential as opposed to the non-conservative control forces of ex-
isting methods. As contrast to methods based on trajectory control,
our approach does not require (or imply) a fixed plot of keyframes
— it rather promotes a style of context-sensitive deformation con-
trol in which objects are guided towards prefered shapes but are
otherwise unrestricted in their motion.

Shape Editing and Interpolation methods offer a rich repertoire
of techniques for deforming meshes [Sheffer and Kraevoy 2004;
Sorkine et al. 2004; Lipman et al. 2005; Botsch et al. 2006], in-
terpolating between meshes [Alexa et al. 2000; Kilian et al. 2007;
Winkler et al. 2010; Chao et al. 2010] and for transferring deforma-
tions from one mesh to another [Sumner and Popović 2004; Baran
et al. 2009].

Most similar to our approach is the work of Sumner et al. [2005],
whose MeshIK method combines shape interpolation and editing

Figure 2: Method Overview: The shape descriptor E(x) for the
current configuration x is projected onto the example manifold
spanned by E1 and E2. The projection E(xw) is then used to con-
struct an elastic potential attracting x toward the examples.

into an intuitive modeling paradigm. While we draw valuable inspi-
ration from MeshIK, our method differs in two important aspects.
First, whereas Sumner et al. interpolate between factored deforma-
tion gradients of triangles, we employ a nonlinear strain measure
evaluated on tetrahedra. This is closer to the approach by Winkler
et al. [2010], who interpolate between dihedral angles and edge
lengths, corresponding to discrete strain measures on triangular sur-
faces [Grinspun et al. 2003]. Second and more important, whereas
MeshIK is restricted to static geometric modeling, our approach is
the first to leverage example-based methods for dynamic physical
simulation.

3 Theory

Our method builds on the foundations of nonlinear continuum me-
chanics — but it will extend other types of simulators to handle
example-based materials. The essential idea is to define an addi-
tional elastic potential that attracts a solid to its subspace of charac-
teristic deformations, to which we refer as the example manifold.

We first introduce the example manifold (§3.1), then explain how to
project arbitrary configurations onto it (§3.2) and finally derive the
elastic example potential along with a dedicated integrator (§3.3).

Before we describe each of these components in detail, we will
briefly sketch their interplay during example-based simulation. Al-
though we eventually use an implicit solver, a clearer picture can
be drawn when considering the case of explicit example-based dy-
namics, which is summarized in the algorithm below. See Fig. 2
for a visual illustration of the involved notions and concepts.

Algorithm 1 Explicitly integrated example-based simulation

Require: initial state x, v
Require: example poses x0, . . . ,xk

1: compute shape vectors Ei = E(xi) // §3.1
2: while simulating do
3: xw = project(x) // §3.2
4: fex = −∇xW (xw,x) // §3.3
5: compute elastic forces fel and external forces fext
6: step dynamics using ftot = fex + fel + fext
7: end while

We start by converting the k example poses into shape space de-
scriptors Ei spanning the example manifold (line 1). In each sim-
ulation step, we first project the current configuration x onto the
example manifold by minimizing (5) to obtain xw (line 3). In order
to compute forces fex that attract the current configuration to the
example manifold, we temporarily use xw as a rest state and con-
struct an elastic potential W (xw,x) (line 4). Adding forces from
the conventional simulator (line 5), we step positions and velocities
forward in time (line 6).



3.1 Example Manifold

A deformation is a change in shape. We will develop a definition of
the example manifold, which describes the set of typical, desirable
deformations of a solid. Before we can define this set, we need a
way to think about sets of deformations.

Strain as a basis for the space of all deformations. When we
think about deformations, we want to “factor out” global rotation
and translations, as these do not affect shape. The same request
also applies locally: if parts of a solid (the arms of a character)
transform rigidly, they have (locally) not changed in shape. The
same reasoning can be found in the construction of nonlinear de-
formation measures — and, indeed, the metric tensor offers exactly
these desired properties [Terzopoulos et al. 1987]: it measures only
local stretching and shearing and is therefore a natural basis for
constructing a “space of all deformations.”

Let us now formalize this construction in the discrete setting: as-
sume that we are given a discrete representation of a solid in the
form of a tetrahedral mesh with n nodes and m elements. Further,
let X ∈ IR3n and x ∈ IR3n denote position vectors describing
undeformed and deformed configurations, respectively. The de-
formation induced by a given configuration x can be quantified
pointwise (equivalently) by the deformation gradient F(X,x) =
∂x/∂X, the rotation-invariant right Cauchy-Green (“metric”) ten-
sor C(X,x) = FTF, or the Green strain tensor E(X,x) =
1
2
(C(X,x)− I) [Bonet and Wood 1997].

Restricting x(X) to be piecewise linear over elements, the Green
strain is constant per tetrahedron. Excluding degenerate configura-
tions (with inverted elements), the 6m-vector of elemental strains
E = [E1, ..,Em]T ∈ IR6m fully encodes any specific deforma-
tion, i.e., it serves as a unique descriptor of the deformation, and in
particular one that is invariant under elemental rotations.

While every deformation maps to a descriptor, the converse is false:
Not every descriptor is reconstructible in the sense that it corre-
sponds to a deformation. The space of reconstructible descrip-
tors, the image of the map x → E(x), is the realizable manifold
F ⊂ R6m (see Fig. 2). This definition fulfills our first goal, for
we can now refer to sets of deformations, in a rotation- and frame-
invariant manner, by refering to subsets of F .

Example manifold by example interpolation Suppose that we
are given two specific example poses x1 and x2. We might in-
terpolate between these examples by interpolating their descriptors
E1 = E(x1) and E2 = E(x2) in R6m:

E(w) = (1− w)E1 + wE2, (1)

for some interpolation weight w. This approach linearly interpo-
lates the stretch and shear of each element, and therefore results in

Figure 3: Example interpolation: reconstructed geometry for dif-
ferent convex combinations of shape descriptors αE1 + (1−α)E2

(as indicated above each pose).

Figure 4: Example projection: the current configuration (in strain
space representation) E(x) is projected onto the example manifold,
yielding the closest point E(xw).

smooth interpolation of all elements as illustrated in Fig. 3. Indeed,
it can be shown that the length of any line segment inside an inter-
polated element is bounded by its corresponding length in the two
examples.

Unfortunately, the interpolated descriptor is generally not realiz-
able: Isolated elements can always satisfy the prescribed strains
of the descriptor, however, assemblies of elements generally can-
not. In a second step, we therefore find the closest realizable strain
E(xw) ∈ F and corresponding configuration xw by solving the
least squares minimization

min
xw

WI(xw, w) = min
xw

1

2
|E(xw)−E(w)|2F , (2)

where the vector norm | · |F is defined to match the sum of the
Frobenius norms of the elemental strain tensors. We refer to the
objective function WI(xw, w) as the interpolation energy, whose
minimization defines the projection Π : R6m → F as w 7→ xw.
The image of the interpolating line segment E(w), w ∈ [0, 1] un-
der the projection Π is an example curve E(xw) on the realizable
manifold F .

The procedure described above is readily generalized to an arbi-
trary number of poses n, where we introduce a weight wi for each
example pose Ei = E(xi). The interpolated strain then simply
becomes E(w) =

∑n
i wiEi with w = (w1, . . . , wn)T . By using

these definitions in (2) we obtain the example manifold E ⊂ F of
realizable strains.

3.2 Example Projection

Our ultimate goal is to formulate a force that attracts the current
configuration of the solid toward the example manifold, equiva-
lently, attracting x toward its projection xw on E (see Fig. 4).

Formulating the projection requires a suitable distance measure.
Inspired by Chao et al. [2010] and Wirth et al. [2010], we ap-
proximate the geodesic distance on F between two shapes [Kilian
et al. 2007] using the elastic potential W (X,x). Many reasonable
choices for W are compatible with our approach; for concreteness
we choose the potential arising from the energy density

W (X,x) = µ|E(X,x)|2F +
λ

2

(
V (x)

V (X)
− 1

)2

, (3)

where λ and µ are material coefficients and V (·) measures the vol-
ume of a given configuration as the sum of elemental volumes. This
simple extension of the St. Venant-Kirchhoff material [Bonet and
Wood 1997] replaces the usual second term with one that allows the
simulation to recover from inversions [Picinbono et al. 2003].



The projection x 7→ xw corresponds to the minimization

min
xw

W (xw,x) s.t. xw ∈ E

or equivalently, invoking the extremizing conditions of (2),

min
xw,w

W (xw,x) s.t. ∇xwWI(xw,w) = 0. (4)

The resulting constrained optimization problem is nonlinear both
in the objective function and the constraints. Applying the penalty
method for constraint enforcement, we minimize

Wp(xw,w,x) = W (xw,x) + γ |∇xwWI(xw,w)|2 (5)

with respect to xw and w, for a sufficiently large fixed penalty
stiffness γ. The weights w are constrained such that wi ≥ 0 and∑

i wi = 1. These constraints restrict the example space to inter-
polations of the provided examples. Since small extrapolations are
in general not harmful, we enforce these constraints also weakly by
adding simple quadratic energies to (5).

Observe that the first term of (4) involves the optimization of the
elastic energy with respect to the undeformed configuration. This
formulation is reminiscent of problems found in, e.g., variational
shape optimization and mesh adaptation [Thoutireddy and Ortiz
2004]. Although the derivations do not pose any particular prob-
lems, these so-called configurational forces are to our knowledge
new to graphics, which is why we list the required gradients and
Hessians in Appendix A.

3.3 Example-based Simulation

With the definition of the example manifold in place and the pro-
jection procedure defined, we are all set for proceeding to the ac-
tual example-based simulation. As mentioned before, our system
integrates readily with existing solid simulators, but is particularly
convenient to build on top of a finite element solver, allowing the
reuse of code for deformation measure and elastic potentials.

Variational Statics Assume that the conventional potential is
given by Wc(x) = W (X,x). In order to solve for static equi-
librium we require that the sum of all external forces fext equal the
internal forces induced by the new, augmented material with po-
tential Wc(x) + Wp(xw,x). This yields the following system of
equations

∇xWc(x) +∇xWp(xw,w,x) = fext. (6)

In this expression we implicitly assume that the projection xw and
weight vector w are always the corresponding minimizer of (4). In
order to handle these two minimizations in the same framework, we
can recall that equation (6) is actually the necessary condition for a
minimizer of the joint total energy

Wtot(xw,w,x) = Wc(x) +Wp(xw,w,x) +Wext(x), (7)

where we assumed that the external forces are conservative. By
minimizing Wtot simultaneously in xw, w and x, we solve both
problems at the same time: The static solution is found with the
correct projection for the example potential.

The two elastic potentials in (7) can be chosen independently, but in
our implementation we use (3) for both of them. In order to further
reduce the number of variables, we set the material constants of the
example potential to scalar multiples of those of the conventional
potential, leaving a single parameter to set. Fig. 5 illustrates the
impact of this parameter for a range of practical values.
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Figure 5: Impact of scaling the material stiffness of the example
potential relative to the conventional potential’s stiffness. An elas-
tic bar is subjected to gravity and simulated with different scaling
coefficients (as indicated).

Variational Implicit Euler For dynamic simulation, we opt for
the implicit Euler method and pursue a similar strategy as for stat-
ics, i.e., we formulate the time stepping scheme as an optimization
problem. We start from the canonical equations of motion

Mẍ +∇xWc(x) +∇xWp(xw,w,x) = fext (8)

where M is the mass matrix. In using our augmented elastic poten-
tial, we again assume that xw and w are minimizers of (4). In order
to arrive at a single optimization problem we first apply the implicit
Euler integration scheme to obtain a nonlinear system of equations

M(
xn − xo

h2
− vo

h
) +∇xWc(xn) +∇xWp(xw,w,xn) = fext,

where h is the step size, xn are new positions and xo and vo the
old positions and velocities, respectively. We can solve this system
in an elegant way by minimizing the objective function

H(xn,xw,w) =
h2

2
(
xn − xo

h2
−vo

h
)TM(

xn − xo

h2
−vo

h
)

+Wc(xn) +Wp(xw,w,xn) . (9)

By optimizing (9) for xn, xw, and w, we simultaneously solve the
coupled problems of projection and time stepping.

Numerical Optimization The discussed optimization problems
for the static and dynamic case are solved robustly by a classic
Newton-Raphson procedure. In order to improve convergence, we
employ a line search scheme and additionally apply diagonal Hes-
sian correction in case of indefinite matrices [Nocedal and Wright
2000]. The dimension of the resulting linear systems is roughly
twice that of conventional simulations. We employ a sparse direct
Cholesky solver for solving the resulting symmetric positive defi-
nite systems [Schenk and Gärtner 2002].

4 Example Design & Implementation

Our method relies on example poses to model the characteristic de-
formation behavior of elastic solids. This section describes how
to design good examples, how to efficiently approximate geomet-
rically and mechanically complex models, and how to extend the
range of effects by controlling the influence region of examples.

4.1 Example Design

Our method accepts example poses in the form of deformed ele-
ment meshes that have the same topology as the undeformed mesh.



There are no specific requirements on the way in which these ex-
amples are created and, for instance, any geometric modeling tool
[Gain and Bechmann 2008] can be used for this purpose. An alter-
native way of designing natural examples is by using a static solver
built on the same elastic potentialWc that is also used in simulation
[Barbič et al. 2009; Mezger et al. 2008]. While the geometric mod-
eling approach imposes virtually no restrictions on creativity, this
physics-based metaphor has the advantage that deformations prop-
agate naturally (unless enforced otherwise) and that the resulting
meshes are unlikely to exhibit severely distorted or inverted ele-
ments.

Apart from the technique used for generating examples, another
important question is what kind of examples should be used. In
order to represent natural transitions to the rest pose, we use the un-
deformed configuration as part of the example set in all our experi-
ments. Any additional example should, first and foremost, represent
characteristic or extreme poses. However, examples should also be
sufficiently different in order to span a diverse space of expressive
deformations with as few poses as possible.

4.2 Embedding Triangle Meshes

Embedding denotes a class of techniques for deforming highly-
detailed geometry in accordance to the deformations of a (poten-
tially) much coarser approximation. On the practical side, embed-
ding is a very efficient way for increasing the level of detail to im-
pressive amounts, as recently demonstrated by the work of Wojtan
et al. [2009].

Embedded meshes can augment coarse volumetric simulations with
high-quality surface details. But since the deformations of the em-
bedded surface follow the coarse physics of the embedding mesh,
the physical detail can generally not be increased — or only to lim-
ited amounts. Our example-based approach does, however, not im-
pose as strict restrictions as the usual fine-to-coarse coupling. Using
a static solver, it is quite easy to deform an embedding mesh such
that its enveloped surface assumes a desired shape. We can thus de-
sign examples that account for realistic deformations of subelement
geometry (see Fig. 1), but we can also create examples that emulate
the deformation behavior of more complex mechanics, such as the
buckling patterns of thin-walled cylinders (see Fig. 11).

Apart from manually designing example poses, one could also use
an approach similar to Barbič et al. [2009] in order to automati-
cally compute the embedding mesh that best approximates a given
input surface. Using this technique, one would first run an offline
simulation of a high-resolution volumetric model and then automat-
ically deform the embedding mesh to match the surfaces of some
characteristic frames. This approach could also used to generate
embedding meshes for thin shell or rod simulations.

4.3 Local and Global Examples

We have until now assumed that examples are defined on the entire
domain of the solid. For such global examples, the deformation of
one part of the object directly influences all other parts as shown in
Fig. 9. However, it is also interesting to limit the influence of an
example to individual parts of an object. Such local examples can
be used to define deformation behavior locally and independent of
other regions. Additionally, different local examples can be com-
bined to yield even more complex global behavior as shown, e.g., in
Fig. 8. Vice versa, by dividing a complex pose into local examples,
we can already specify much of an object’s characteristic behavior
using only a single deformed configuration.

On a technical note, we constrain the example space to convex com-
binations of the individual poses in the case of global examples,

which is necessary in order to obtain well-behaved strain interpola-
tion. While it may appear tempting to allow extrapolation, doing so
entails the risk of running into invalid strains: It is a simple matter
to determine weights such that the extrapolation of two valid strain
tensors yields a metric tensor with negative values on its diagonal
— but this is not meaningful since Cii =

∑
k FkiFki is always

positive.

For local examples, however, the convexity constraint can be re-
laxed: we can simply form groups of interacting examples such
that any two poses from different groups have no deformed element
in common. In this way, we can safely enforce the convexity con-
straints on each group in isolation. As a practical implication, doing
so allows individual parts of an object to deform independently of
other parts and enlarges the space of prefered shapes in an efficient
manner.

5 Results

This section presents a set of examples that illustrate different as-
pects of our approach and demonstrate typical applications.

Figure 6: An elastic cuboid deforms under gravity using no exam-
ple, a twist example and an S-shaped example.

Our method allows an animator to design and simulate complex
elastic materials by merely providing a set of example poses that
correspond to characteristic, desirable, or extreme deformations.
Fig. 6 shows a simple example that illustrates this idea: by aug-
menting an elastic bar with an example potential constructed from
twist or S-shaped poses, we can significantly change its deforma-
tion behavior and thus imprint different styles onto the animation.
Though possible in theory, achieving the same results with a con-
ventional simulator would require tedious tuning of an inhomoge-
neous, anisotropic, and probably nonlinear material. By contrast,
our approach is intuitive and output-oriented, making it well-suited
to design processes commonly used for creative applications.

Figure 7: Compressed sneaker simulated as a coarse solid. With-
out examples (left) and augmented with two local examples (right).

Global examples are used to directly specify prefered deformations
for an entire object, which can be understood as a what-you-see-is-
what-you-get approach to material design. However, there are also
many common objects for which the characteristic deformations
are rather local than global. Moreover, different local deformations
can typically occur simultaneously and independently of each other.
This kind of behavior is illustrated in the animation shown in Fig.



Figure 8: Local examples defined over unconnected regions show-
cased on a balloon dog.

7, for which two characteristic deformations of a shoe, namely the
buckling of its toe and the bulging of its heel, are provided as local
examples to the simulation.

This animation also showcases the application of embedding: the
high-resolution geometry of the shoe deforms in accordance to the
coarse embedding mesh — but it does so in a very plausible way.
This, in turn, is due to the fact that the volumetric example meshes
were generated such that the embedded mesh assumes the desired
deformations, irrespective of the actual shape of the embedding
mesh.

Local examples do not necessarily have to be defined over con-
nected components, but can also couple remote regions while still
affecting only a small part of the entire object. An example of this
application can be seen in Fig. 8, which shows that, in an artis-
tic setting, compressing the nose of a balloon dog can lead to an
inflation of its ears.

Our method can be used to design deformation styles which are
difficult to generate with conventional elastic materials, but are still
within the range of what we might expect from some exotic mate-
rial. We can, however, also go a step beyond and use examples to
induce deformations that clearly exceed the realm of conventional
elastic materials. An example that goes along these lines can be
seen in Fig. 9, which shows a gummy bear that, despite its jelly-
like appearance, seems to have a personality of its own, driving it
to deform in very peculiar ways in response to user interaction.

Figure 9: A gummy bear is equipped with expressive examples to
create an impression of personality.

Similar in spirit is the example shown in Fig. 1, which depicts the
unfortunate incident of a toy car hitting the wall beneath a fake tun-
nel. Using example-based simulation, we can make the car react to
the impact in very diverse ways, following the exaggerated-physics
style frequently found in cartoons.

Our method primarily aims at volumetric solids, but thanks to the
embedding technique it can also be used to mimic the behavior of
more complex mechanical models such as thin shells. The first
two images in Fig. 11 show our approach applied to a cylindri-
cal shell which, when compressed, exhibits the typical diamond-
shaped buckling patterns. Note that the example was not computed
with a thin shell simulation code but designed with a static version
of our solid simulator. The reason why the buckling patterns can
still appear in a plausible way is simply that the example potential

Figure 10: A car with four example poses, each of which is acti-
vated during the animation in response to different impact events.

renders these deformations energetically favorable. As shown in
the remaining images of Fig. 11, we can again specify various de-
formation examples to obtain diverse material effects, ranging from
physically plausible deformations to art-directed physical anima-
tion.

Performance We provide timings for all examples presented in
this section in Tab. 1. All simulations were performed with a man-
ifold constraint penalty of 104, a convex weight penalty of 100 and
a timestep size of 0.02s.

Model #DOFs tasm tnewton ttot α

Cuboid Twist 975 80 141 / 308 528 / 3064 40
Sneaker 942 107 159 / 173 680 / 1288 20
Teddy 828 59 61 / 65 1333 / 1410 40
Cylinder 227 43 57 / 328 502 / 1214 20
Car 1410 110 192 / 204 2990 / 3292 50
Balloon 1320 106 99 / 195 125 / 2196 1000

Table 1: Timings (in ms) for single gradient/Hessian assembly
(tasm) and Newton step with line search (tnewton, min/max time),
as well as min/max total time per timestep (ttot), taken on a single
core of a Intel Core i7 960, 3.2 GHz. α denotes the stiffness ratio
between manifold and conventional potential.

It should be noted that the benefits of example-based elastic mate-
rials come at the price of additional computation costs. As can be
seen from Tab. 1, the largest fraction of the time is spent on the
assembly of the linear system, including the computation of gradi-
ents and Hessians, and its solution. Currently, the performance of
our method does not allow its use in interactive applications such as
video games. In the context of artistic material design, however, the
additional costs of our approach seem acceptable as they are very
likely to pay off in terms of time saved on tuning material parame-
ters of conventional material models.

1 ex. 2 ex. 3 ex. 4 ex. 8 ex. 12 ex.
tasm 120 124 128 132 148 165
tslv 244 216 213 218 220 232

Table 2: Performance scaling for multiple examples (top row) il-
lustrated on the cuboid animation (Fig. 6). Average timings (in
ms) for assembling (tasm) and solving (tslv) the linear system in a
single Newton step.

As another performance indicator, we also investigated the scaling
of our method with respect to the number of example poses. Our
method can faithfully handle the case of multiple examples as ex-



Figure 11: A cylindrical surface mesh embedded in a volumetric simulation mesh. Using a buckled example pose allows us to emulate thin
shell behavior. By varying the input examples we can effectively control the deformation behavior of the embedded geometry.

emplified, e.g., in the animations of the car (Fig. 10), the balloon-
dog, or the pendulum (see accompanying video). For a quantitative
analysis, we measured computation times for an increasing number
of example poses on the cuboid animation. The results shown in
Tab. 2 indicate that the number of examples is not a limiting factor
of our method: Using twelve poses instead of one, the time spent
on solving the nonlinear system increases by only 15%.

6 Discussion

We have only scratched the surface of what is becoming possible
with example-based simulation. We see many promising directions
which we would like to explore in the future. While we framed
our approach in the context of deformable solids, we believe that
the underlying theory can be generalized to different elastic mod-
els, such as shells and rods. This could, for example, be interesting
in the contexts of cloth and hair simulation. Furthermore, we have
not used the information obtained through the projection on the ex-
ample manifold — an exciting application could be to couple the
example weights to secondary effects, e.g., for modulating texture
or surface geometry. There is also much room for further exploring
the definition of the shape space, which currently only considers
position information via the Green strain. It might be interesting to
also account for velocities (rate of strain) or even forces. Another
idea would be to directly encode different aspects of deformation
(such as incompressibility) into the definition of the shape space
and, e.g., define an example manifold that sees only deviatoric (i.e.,
volume-preserving) deformations.

Our prototype implementation already indicates that our method
has great potential in designing materials and art-directing simu-
lations. However, we also see various possibilities for extensions
and improvements. In particular the performance of our optimiza-
tion scheme should be increased and we anticipate that Lagrangian
methods will lead to better convergence than our current penalty
approach. Furthermore, we currently rely on the user to create ex-
amples that are meaningful in that they do neither contradict each
other nor strongly counteract the underlying elastic potential. It
would be desirable to develop methods that assist the user in this
process by providing appropriate feedback on the quality of exam-
ples. Another promising direction would be to automatically select
a set of example poses from a given input animation.
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SCHENK, O., AND GÄRTNER, K. 2002. Solving unsymmetric
sparse systems of linear equations with pardiso. In Proc. ICCS
’02, 355–363.

SHEFFER, A., AND KRAEVOY, V. 2004. Pyramid Coordinates
for Morphing and Deformation. In Proc. 3D Data Processing,
Visualization, and Transmission, 68–75.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
ROSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Symp. Geometry processing (SGP ’04), 179–188.
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A Gradients and Hessians

In order to perform Newton optimization of the energies (7) and
(9) we need first and second derivatives of (2) and (3). While
derivatives of the second term (volume-change) in (3) are quite sim-
ple to derive [Picinbono et al. 2003], the derivatives of the first
term (Green strain) are more involved and given here. We re-
sort to index notation in order to write the element-wise deriva-
tives in compact form. Let Xmn and xmn denote the n-th
components of position vectors for node m in the undeformed
and deformed configuration, respectively. Introducing the ma-
trix S = [[−1, 1, 0, 0]T , [−1, 0, 1, 0]T , [−1, 0, 0, 1]T ] and defin-
ing dij = xkiSkj and Dij = XkiSkj , the deformation gradi-
ent becomes Fij = dikD

−1
kj . The deformed first derivative of

tr(ETE) = EijEij can then be stated compactly as

∂(EijEij)

∂xmn
= 2(SD−1EFT )mn,

and the second derivative is obtained as

∂2(EijEij)

∂xmn∂xst
= (FFT )nt(SD

−1D−TST )ms

+ (SD−1FT )mt(SD
−1FT )sn

+ 2δnt(SD
−1ED−TST )ms.

The derivatives with respect to the undeformed configuration as-
sume a similar form: the First derivatives are

∂(EijEij)

∂Xmn
= −2(SD−1EC)mn,

while second derivatives follow as

∂2(EijEij)

∂Xmn∂Xst
= (CC)nt(SD

−1D−TST )ms

+ (SD−1C)mt(SD
−1C)sn

+ 2Cnt(SD
−1ED−TST )ms

+ 2(SD−1)sn(SD−1EC)mt

+ 2(SD−1)mt(SD
−1EC)sn.


