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Abstract

We introduce a new and efficient approach for collision detection in point-based animations, based on the fast

computation of tight surface bounds. Our approach is able to tightly bound a high-resolution surface with a cost

linear in the number of simulation nodes, which is typically small. We extend concepts about bounds of convex sets

to the point-based deformation setting, and we introduce an efficient algorithm for finding extrema of these convex

sets. We can compute surface bounds orders of magnitude faster and/or tighter than with previous methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling.

1. Introduction

Point-based or meshless discretization methods have gained
rapid popularity for performing physically-based simu-
lations in computer graphics, due to the versatility of
the discretization and the capability of handling large
deformations [MKN∗04], topological changes in cutting
or fracture [PKA∗05, WSG05, SOG06], or state transi-
tions [KAG∗05]. Here we focus on the application of
meshless methods to the simulation of elastic deforma-
tions derived from continuum mechanics, using moving least
squares (MLS) interpolation of shape functions [MKN∗04].

Point-based discretization defines a deformation field in
the continuum, but in computer graphics we are particularly
interested with the deformation of object boundaries, which
are animated along with the deformation field. We track ob-
ject boundaries explicitly using triangle meshes, as they of-
fer higher robustness for collision detection and topological
changes [SOG06]. In visually interesting animations, object
boundaries have high complexity (e.g., tens of thousands of
vertices), while the deformation field may be well captured
by many fewer simulation nodes (e.g., several hundreds).

Collision detection is an essential component of the ani-
mation of deformable objects, and classical acceleration data
structures include spatial partitioning [THM∗03] or bound-
ing volume hierarchies (BVH) [GLM96]. Pruning of non-
colliding regions requires the evaluation of the deformation

† {deniss,otaduy,grossm}@inf.ethz.ch

on the boundary, whose cost depends a priori on the com-
plexity of the boundary surface, not the number of simula-
tion nodes. In the context of BVHs applied to reduced lin-
ear deformations [JP04], skinning [KZ05, KOZ06], or low-
resolution FEM deformations [MO06,OGRG07], several au-
thors have exploited the existence of a small set of defor-
mation degrees of freedom for efficiently computing sur-
face bounds. Similarly, one could exploit the few degrees
of freedom existing in point-based animations for efficiently
computing bounds for BVHs [AKP∗05, SBT06]. However,
as we later elaborate in the paper, point-based deformations
pose additional obstacles, making the application of previ-
ous methods highly inefficient.

Our Contribution

In this paper, we present a method for efficiently computing
tight surface bounds in the context of BVHs applied to point-
based animations. Given an object with ℓ vertices animated
from n simulation nodes, we reduce the best-case O(ℓ) cost
with classical BVH-based approaches to a much more effi-
cient O(n) cost. In practice, we obtain more than one-order-
of-magnitude speed-up w.r.t. bottom-up update of BVHs.

Our approach builds on the concept of limited convex

combinations designed by Kavan et al. [KZ05, KOZ06].
They bound surfaces defined by skinning of articulated bod-
ies, and we extend their method to surfaces defined by point-
based deformation fields. This approach produces bounds
that can be orders of magnitude tighter than previous ap-
proaches based on accumulation of deformations [AKP∗05].
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Figure 1: Efficient Bounds of the Point-Based Deformation of a Brain. Left: Undeformed brain model with an optimal AABB.

Middle: Simulation nodes of the brain being deformed by a pulling force. Right: Under this large deformation, we can compute

a tight AABB (outer box) that is only about twice as big as the optimal one (inner box), with cost linear in the number of

simulation nodes, independent of the number of surface vertices.

However, a direct extension of the method of Kavan et al.
yields a complexity quadratic in the number of simulation
nodes. We introduce a novel evaluation of surface bounds
(specifically, an AABB) from convex combinations, with
complexity linear in the number of simulation nodes.

The rest of the paper is organized as follows. In Section 3
we review the point-based deformation model and outline
the algorithm for efficiently updating the associated BVH.
We then present in Section 4 our contribution for efficiently
refitting BVs in point-based deformations. We discuss re-
sults in Section 5 and conclude with ideas for future work.

2. Related Work

Several types of point-based deformation models are cur-
rently used in computer graphics [MHTG05, MHHR06,
RJ07], but we build our work on the one with MLS interpola-
tion of shape functions by Müller et al. [MKN∗04], due to its
foundation on continuum mechanics. Please refer to [FM04]
for a survey on meshless methods, and to [NMK∗05] for a
recent survey on deformable models in computer graphics.

BVHs [GLM96] constitute the most popular acceleration
data structure for collision detection, in particular with rigid
bodies. When applied to general deformation models, updat-
ing a BVH suffers from a cost linear in the number of ver-
tices [Van97]. Using spheres [Hub95], AABBs [Van97], or
k-DOPs [KHM∗98] as BVs, the BVH can easily be updated
in a bottom-up manner with constant cost per BV. However,
deformation models with far fewer degrees of freedom than
the number of vertices potentially allow for sublinear update
of BVs high in the hierarchy, and thereby efficient interrupt-
ible collision detection [Hub95], or even sublinear cost for
exact collision detection.

Klug and Alexa [KA04] presented efficient BV computa-
tion for linearly interpolated shapes, whose degrees of free-

dom are the blending weights. James and Pai [JP04] in-
troduced the BD-Tree, an efficient sphere-tree for bound-
ing surfaces described by linear combination of a few de-
grees of freedom. The BD-Tree was originally applied to re-
duced deformable models, and other extensions of sphere-
trees have been applied to FEM deformations on coarse
meshes [MO06], geometric deformations through shape
matching [SBT06], or point-based animations [AKP∗05],
exploiting knowledge about the deformation model. All
these approaches compute bounds by accumulating defor-
mations from all degrees of freedom, and therefore they suf-
fer tightness degradation with increasing number of simula-
tion nodes. As we show in Section 5, our approach preserves
tightness independently of the number of simulation nodes.

Kavan and Zara [KZ05] computed efficient BVs for
skinned articulated bodies, with each surface vertex defined
by a convex combination of rigid transformations. A set of ℓ
vertices animated from a common set of n joints (ℓ ≫ n)
can be represented as a set of ℓ points in the R

n space
of possible convex combinations. Kavan and Zara found
a bounding set of limited convex combinations defined by
a simpler set of m = O(n2) corners in R

n. Then, finding
the contribution of a joint set to a BV reduces to bound-
ing the m corners instead of the original ℓ vertices. The
use of limited convex combinations has been extended to
spherical blend skinning [KOZ06] and FEM deformations
on coarse meshes [OGRG07]. However, their direct applica-
tion to point-based animations would produce an explosion
of the number of joint sets and corners.

3. Overview

In this section, we review the point-based deformation model
we use, and describe the animation of the vertices of a trian-
gle mesh using the point-based deformation field. Then, we
discuss the initialization of the BVH (specifically, an AABB-
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tree), and outline the update strategy of the complete BVH
prior to collision detection queries. But, first, we introduce
some useful conventions.

3.1. Conventions

We use convex combinations extensively throughout this pa-
per, hence we define the set of convex weights in R

n as

Wn = {w ∈ R
n : 0 ≤ w j ≤ 1,

n

∑
j=1

w j = 1}. (1)

3.2. Point-Based Animation

According to the model of Müller et al. [MKN∗04], the de-
formation field u(x) of an object is defined at a discrete set
of simulation nodes. The gradient ∇u of this vector field
(which is needed for calculating material stress and strain)
is computed using a moving least-squares approximation. A
common approach to deform the surface of the object (a tri-
angle mesh in our case) is to carry it along with the simula-
tion nodes, which requires an extrapolation of the deforma-
tion field to the surface. The position vk of a surface vertex
is then defined by

vk = v
0
k +

n

∑
j=1

wk j

(

u j +∇u
T
j (v0

k −x j)
)

, (2)

where u j, x j and ∇u j are, respectively, the displacement,
reference position and deformation gradient of a simulation
node, v0

k is the reference position of the vertex, and wk j is
the constant weight with which a node influences the vertex.

Since the vector of weights wk = (wk1, ..,wkn) is convex,
i.e., wk ∈Wn, the transformed vertex can be written in a more
general form (using homogeneous coordinates) as a convex
combination of affine transformations T j:

vk =
n

∑
j=1

wk jT jv
0
k , T j =

(

A j t j

0 1

)

, (3)

A j = ∇u
T
j + I, t j = u j −∇u

T
j x j.

3.3. AABB-Tree Construction and Initialization

We have chosen AABBs as the BVs because their update
corresponds to finding extreme values along specific direc-
tions (i.e., the coordinate axes), which can be efficiently car-
ried out in the context of convex sets as we will show in
Section 4.3. We construct the initial AABB-tree by succes-
sive top-down splitting of surface triangles at the median of
the longest axis defined by the covariance matrix [GLM96].

A given AABB B must bound a set of ℓ vertices
{v1, . . . ,vℓ}, which are animated from n simulation nodes
(i.e., those nodes that influence at least one of the ℓ vertices).
As shown in Figure 2, each of the vertices may effectively
be animated from a subset of the n nodes, but we handle all
nodes at once by considering weights w = 0.

Figure 2: Simulation Nodes,

Vertices, and AABB. A set of

9 vertices vk (blue squares) in

rest configuration, bounded by

an AABB B0, and the 3 in-

fluencing simulation nodes x j

(red circles). Red dotted lines

denote the vertices influenced

by one particular node x1.

For every AABB B, we store its center and extensions in
the rest position, the set of influencing nodes, and, for every
node, the maximum and minimum weights, h and l, with
which it influences the vertices to be bounded.

3.4. Run-Time AABB-Tree Update

Typically, AABB-trees for deformable bodies are updated in
a bottom-up manner, by first refitting leaf AABBs with cost
O(1), and then refitting higher AABBs by bounding their
children. With our efficient bounds for point-based defor-
mations, the preferred update strategy depends on the type
of collision query to be carried out. For example, interrupt-
ible collision detection [Hub95] suggests an on-demand top-
down update of AABBs.

In our simulations, we have carried out exact collision de-
tection queries, and we have exploited temporal coherence
in the update of the AABB-tree. Instead of updating the
AABB-tree top-down, we cache the front of the subtree of
AABBs visited in the previous query. We refit the AABBs
of this front with our novel algorithm, but we refit higher
AABBs by simply bounding their children. Below the front,
we again update AABBs with our algorithm on-demand.

For leaf AABBs, we evaluate the positions of the vertices
to be bounded, and we compute the optimal AABB instead
of following our method. At leaf AABBs, evaluating ver-
tices incurs little penalty, as they are likely to be evaluated
for primitive-level queries anyway, and the bounds turn out
tighter, thereby saving primitive-level queries as well.

4. Efficient Refitting of AABBs

In this section we present our main contribution: bounding
ℓ vertices animated from n simulation nodes with cost O(n).
We first show that the deformed vertices can be bounded by
combining transformed versions of the rest-position AABB.
Then, we show how to bound the resulting AABB using lim-
ited convex combinations, and we present our algorithm for
efficiently evaluating the extrema of the AABB. We con-
clude with a summary of the algorithm for refitting AABBs.
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4.1. AABBs in Deformed Space

Given an AABB B0 for a set of vertices {v0
k} in rest con-

figuration, here we show that, if the vertices are deformed
by convex combinations of affine transformations, the de-
formed vertices can be bounded by convex combinations
of transformed AABBs. We first introduce the concepts of
transformed AABB and convex combination of AABBs, as
well as two associated lemmas (proved in Appendix A).

Definition 1: Given an AABB B0, we define the trans-
formed AABB T jB0 as the parallelepiped defined by the
transformed corners of B0. This parallelepiped is bounded
by another AABB B̃.

Lemma 1: Based on Definition 1, given a vertex v0
k

bounded by an AABB B0, the transformed vertex T jv
0
k is

also bounded by the transformed AABB T jB0.

Definition 2: Given a set of n AABBs {B j}, we define
their convex combination as the set of points obtained from
convex combinations of their interior points.

n

∑
j=1

w jB j ≡

{

n

∑
j=1

w jp j : p j ∈ B j

}

(4)

This is a natural application of the standard definition of con-
vex combination of sets of points.

Lemma 2: A convex combination of AABBs {B j} is an-
other AABB whose extrema are defined by the same convex
combination of the extrema of {B j}.

4.1.1. AABB for a Deformed Vertex

Given a vertex vk defined by convex combination of affine
transformations as in Eqn. (3), and applying Lemmas 1
and 2, it is easy to see that the vertex can be bounded by
the same convex combination of transformed AABBs:

vk =
n

∑
j=1

wk jT jv
0
k ∈

n

∑
j=1

wk jT jB0 ⊆
n

∑
j=1

wk jB̃ j, (5)

where v0
k ∈ B0, and B̃ j is the AABB that tightly bounds the

parallelepiped T jB0.

Figure 3 depicts a 2D AABB B0 influenced by two nodes,
the transformed parallelepipeds {B1,B2} after deformation
of the two nodes, the bounding AABBs {B̃1, B̃2}, and the
region defined by their convex combination.

4.1.2. AABB for a Set of Vertices

We will bound a set of ℓ vertices by bounding their convex
hull CH(v1, ...,vℓ) = ∑

ℓ
k=1 ukvk, where the vector of weights

u ∈ Wℓ. Given the n simulation nodes that define the defor-
mation of all ℓ vertices, the AABB B0 in rest configuration,
and the transformed AABBs T jB0 ∈ B̃ j, we bound the con-
vex hull by applying individual bounds (5) as:

CH(v1, ...,vℓ) =
ℓ

∑
k=1

ukvk ⊂
ℓ

∑
k=1

uk

(

n

∑
j=1

wk jB̃ j

)

. (6)

Figure 3: Transformed AABBs. Left: A 2D AABB B0 in rest

position, and the two nodes influencing it. Middle: Each de-

formed node defines an affine transformation on B0, leading

to the parallelepipeds B1 and B2. Right: The parallelepipeds

are bounded to obtain the transformed AABBs B̃1 and B̃2,

and the space of their convex combinations is indicated with

dotted blue lines.

Swapping sums, we obtain:

CH(v1, ...,vℓ) ⊂
n

∑
j=1

(

ℓ

∑
k=1

ukwk j

)

B̃ j =
n

∑
j=1

w̃ jB̃ j. (7)

The weights {w̃ j} represent a convex combination of convex
weights, which yield another convex combination, i.e., w̃ =
(w̃1, . . . , w̃n) ∈ Wn. In other words, every point in the con-
vex hull of the deformed vertices can be bounded by a con-
vex combination of transformed AABBs. From Lemma 2,
this is another AABB whose extrema are computed by con-
vex combination of the extrema of the transformed AABBs.
However, each point in the convex hull of the deformed ver-
tices is defined by one convex combination, and is therefore
bounded by one different convex combination of AABBs.

A possible way to bound all vertices with cost O(n) (i.e.,
linear in the number of simulation nodes) would be to com-
pute the transformed AABBs B̃ j and bound them all. This
amounts to replacing the set of possible convex combina-
tions w̃ with a more conservative set Wn, which would yield
a loose AABB. Next, we will exploit the concept of limited
convex combinations for designing tighter bounds.

4.2. Bounds from Limited Convex Combinations

The term w̃ j = ∑
ℓ
k=1 ukwk j in Eqn. (7) represents all convex

combinations of the weights with which the jth simulation
node influences the vertices. This term is bounded by an in-
terval of weights, i.e., w̃ j ∈ [l j,h j], where l j and h j are the

minimum and maximum weight of the jth node.

In the space R
n of weight vectors, the interval [l j,h j]

yields a region defined by two parallel halfspaces w j ≥ l j

and w j ≤ h j. Following Kavan and Zara [KZ05], we define
the limited convex weight space (See Figure 4) as the region
W ′

n ⊂Wn ⊂ R
n bounded by pairs of parallel hyperplanes and
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intersecting the hyperplane of convex weights. Formally,

W
′
n =

{

w ∈ R
n : 0 ≤ l j ≤ w j ≤ h j ≤ 1,

n

∑
j=1

w j = 1

}

. (8)

It is important to highlight that W ′
n is a conservative bound

of all possible weight vectors w̃.

The limited convex weight space W ′
n may also be repre-

sented as the space spanned by convex combinations of its
corners [KOZ06]. We first describe how the corners of W ′

n

can be used for refitting AABBs, and we then discuss the
computation of the corners themselves.

4.2.1. Bounds from Corners

Let us assume for now that W ′
n has m corners {w′

i}. Then, a
weight vector w̃ can be represented as w̃ = ∑

m
i=1 uiw

′
i , u ∈

Wm, or for each component, w̃ j = ∑
m
i=1 uiw

′
i j . Applying this

definition to the convex combination of AABBs in Eqn. (7),

B =
n

∑
j=1

w̃ jB̃ j =
n

∑
j=1

m

∑
i=1

uiw
′
i jB̃ j =

m

∑
i=1

uiB
′
i . (9)

From this expression, we can conclude that the deformed
vertices can be bounded by first computing a combined
AABB B′

i = ∑
n
j=1 w′

i jB̃ j for each corner of W ′
n , and then

bounding all the combined AABBs. This is, in essence, the
algorithm proposed by Kavan and Zara [KZ05] for sphere
trees in linear blend skinning, but in Section 4.3 we demon-
strate its inefficiency for point-based animation.

4.2.2. Computation of Corners

As noted by Kavan and Zara [KZ05], the corners of W ′
n are

defined by intersections of hyperplanes w j = l j , w j = h j,
and ∑

n
j=1 w j = 1. Finding the exact corners in R

n is a hard
geometric problem, but here we define easy-to-compute al-
ternative corners that conservatively bound W ′

n .

We first identify the region of the hyperplane of convex
weights, ∑

n
j=1 w j = 1, bounded by the hyperplanes of min-

imum weights w j = l j . This region constitutes an n− 1 di-
mensional simplex in R

n, and has, therefore, n corners. Each
of the corners can be truncated by one of the hyperplanes
of maximum weight, w j = h j, thus cutting the n− 1 lines
meeting at the corner, as shown in Figure 4-right for a case
with three simulation nodes. In total, the truncated simplex
yields m = n(n−1) = O(n2) corners. For example, the cor-
ner obtained by truncating with w j = h j the line resulting
from hyperplanes {wk = lk : k /∈ {i, j}} is trivially defined
as w′ = (l1, . . . ,1−h j −∑k /∈{i, j} lk, . . . ,h j, . . . , ln).

4.3. Efficient Evaluation of Extreme Corners

As noted in Section 4.2.1, the deformed vertices can
be bounded by computing a combination of transformed
AABBs for each corner of W ′

n , and then bounding all the
combined AABBs {B′

i}. Since there are m = O(n2) cor-
ners, and evaluating each combined AABB has an O(n) cost,

Figure 4: Corners in the Limited Convex Weight Space.

Left: The limited convex weight space W ′
n ∈ R

n (i.e., with

3 simulation nodes), shaded in blue, is defined by hyper-

planes of maximum (in red) and minimum weights (in green),

and the hyperplane of convex weights. Blue circles repre-

sent the weight vectors for the vertices to be bounded, and

blue squares represent the corners of W ′
n . Right: close-up on

one corner of the simplex defined by minimum-weight hyper-

planes, being truncated by a maximum-weight hyperplane.

the total cost of this procedure would be O(n3), although
a coherence-aware O(n2) implementation is also possible.
However, note that the resulting AABB is defined simply
by six extreme values along the three coordinate axes, and
it would suffice to evaluate the corners that realize the six
extreme values. In fact, with our definition of corners intro-
duced in Section 4.2.2, selecting the corner that realizes each
extreme value has a cost O(n).

Let us pick a direction γ∈{x+,x−,y+,y−,z+,z−}. Given
the transformed AABBs {B̃ j} associated with the n sim-
ulation nodes, we define as b

γ
j the extreme value of each

AABB B̃ j along γ. Then, we identify the simulation node
j1 = argmax jb

γ
j that realizes the largest extreme, as well as

the second largest, j2 = argmax j 6= j1
b

γ
j . As proved in Appen-

dix B, the corner that realizes the extreme along γ is defined
as:

w
γ = (l1, . . . ,h j1 , . . . ,1−h j1 − ∑

j /∈{ j1, j2}

l j, . . . , ln). (10)

And the value of the extreme itself can be computed as:

b
γ = h j1 b

γ
j1

+(1−h j1 − ∑
j /∈{ j1, j2}

l j)b
γ
j2

+ ∑
j /∈{ j1, j2}

l jb
γ
j.

(11)
For negative directions {x−,y−,z−}, we flip the sign of ex-
trema before searching for the largest values.

It can easily be deduced that computing each of the six
extrema requires an O(n) search for the two largest values,
plus an O(n) evaluation of the extreme corner.

4.4. Summary of AABB Refitting

After explaining the principles of our AABB refitting al-
gorithm, we can now list the steps for its implementation.
Given a rest-position AABB B0:
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# verts # nodes Optimal

65 225 509 AABB

3.5K 15 35 90 2.0e3
30K 18 48 100 17.2e3
145K 18 46 100 82.5e3

Table 1: Scalability Analysis. Time (in µs) for fitting an

AABB to the brain model from Figure 1, with varying num-

bers of vertices and simulation nodes. The trend matches the

expected linear cost in the number of nodes. For compari-

son, the last column shows the time to compute the optimal

AABB, which is linear in the number of vertices.

1. For every influencing simulation node j, transform B0 by
the affine transformation T j to obtain a parallelepiped B j,
according to Definition 1 in Section 4.1.

2. Compute transformed AABBs {B̃ j} that bound {B j}.
3. For each Cartesian orientation γ, identify the simulation

nodes whose transformed AABBs realize the two largest
extrema, and evaluate the bound bγ based on Eqn. (11).

5. Results

We have tested the tightness of AABBs computed with our
algorithm, the scalability of the approach, and its perfor-
mance on several benchmark examples. All tests were car-
ried out on a 3.4 GHz Pentium-4 PC with 1 GB of memory.

Figure 1 shows a brain model deformed under pulling
forces. In this scenario, we have evaluated the tightness of
AABBs computed with our method, for a surface mesh con-
sisting of 29966 vertices, with two different simulation node
sets: 65 and 509. For such a dense surface, AABB tightness
is practically independent of the number of vertices, as the
weights of simulation nodes vary very little between adja-
cent vertices. Figure 5 shows the ratio between the radius
of AABBs computed with our method and optimal AABBs,
across all levels of the BVH (1 stands for the root, 15 stands
for the leaves). The left plot shows the average ratio in the
course of the simulation, while the right plot shows the max-
imum ratio. We measure the radius of an AABB as half of
its diagonal. We have also compared the tightness with the
approach of Adams et al. [AKP∗05], and with our approach
we obtain a root BV up to 68 times tighter with 509 simula-
tion nodes. Our root AABB is at most 2.5 times larger than
the optimum, and only 1.5 times larger on average, as high-
lighted in Figure 1. For completeness, in this test we have
used our refitting method even on leaf AABBs, although
it would be more efficient to evaluate vertex positions and
compute optimal bounds, as discussed in Section 3.4.

Using the same brain model, we have tested the scalability
of our method as a function of the number of vertices and
simulation nodes. Table 1 shows the time (in µs) for fitting
an AABB to the brain model. As expected, with ℓ vertices
and n simulation nodes, the cost is O(n), i.e., linear in the
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BVH Levels

Avg. BV Radius Ratio

ours 65 nodes
ours 509 nodes
[AKP*05] 65 nodes
[AKP*05] 509 nodes
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[AKP*05] 509 nodes

Figure 5: BV Tightness Analysis. Ratios between the

radii of AABBs computed with our method and the optimal

AABBs, for all levels of the AABB-tree, on the brain model

of Figure 1. The left plot shows the average ratio over the

course of a simulation, while the right plot shows the max-

imum ratio for each level. Our method largely improves the

tightness of the sphere-tree of Adams et al. [AKP∗05].

number of simulation nodes and invariant in the number of
vertices. The last column shows the time for computing the
optimal AABB, which is O(ℓ), i.e., linear in the number of
vertices, and up to almost three orders of magnitude larger
than with our method.

We have evaluated the performance of our approach on
the scene of Figure 6. Six Santa Claus models are attached
to a ring. The ring is then rotated, producing deformations
and collisions of the models. In Table 2, we report tim-
ings (in ms) for updating the AABB-trees and performing
collision detection queries, with different model complexi-
ties, and two different ring motions, which produce differ-
ent contact scenarios. We have tested models with ∼ 3K and
45K vertices (18K and 270K in total in the scene), and with
115 and 550 simulation nodes (690 and 3300 in total in the
scene). We compare our AABB-tree update method (using
the front-tracking approach discussed in Section 3.4), with a
full bottom-up update. Note that in this case, bounding boxes
are optimal and the timings are independent of the number
of simulation nodes. With 45K vertices, the speed-up for up-
dating AABBs is between 69 and 126 times, and the total
speed-up is between 15 and 27. The collision query consists
of finding all intersecting triangles, and it is up to four times
slower with our method, as it includes on-demand AABB
updates and does not use optimal bounding boxes. However,
the bottleneck of the entire collision detection process is re-
fitting the BVH-hierarchy, and one may extrapolate from the
data that our method would provide even higher speed-up
with more complex surfaces.

We have also tested the performance on the scene of Fig-
ure 7, with 24 fishes with 8K vertices and 96 simulation
nodes each. With our method, the refitting of AABB-trees
takes 5.3 ms on average, and collision queries take 26.3 ms.
With full bottom-up update, the refitting takes 401.7 ms. on
average, and collision queries take 16.6 ms. In total, our
method provides a speed-up of about 12 times.

c© The Eurographics Association 2007.
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Figure 6: Santa Claus Models with Point-Based Deformations. When the top ring moves, the models deform and collide with

each other. The left image shows the sampling of simulation nodes, while the right image highlights intersecting triangles.

Scene Description Full Bottom-Up Our Method

# verts (×6) # nodes (×6) Contacts Refit Query Total Refit Query Total Speed-Up

2 857 115 small 37.1 2.12 39.3 1.83 5.72 7.55 5.2x
2 857 550 small 37.1 2.12 39.3 2.36 5.60 7.97 4.9x
45 682 115 small 575.7 5.89 581.6 4.54 16.6 21.1 27.5x
45 682 550 small 575.7 5.89 581.6 5.77 18.7 24.5 23.7x
2 857 115 large 37.9 2.48 40.4 3.38 10.0 13.4 3.0x
2 857 550 large 37.9 2.48 40.4 3.26 9.28 12.5 3.2x
45 682 115 large 569.7 8.84 578.6 6.87 24.5 31.4 18.4x
45 682 550 large 569.7 8.84 578.6 8.23 29.3 37.5 15.4x

Table 2: Performance Analysis. Timings (in ms) for AABB-tree update and collision queries for the benchmark of Figure 6,

with various vertex and simulation node resolutions, and under different contact scenarios.

6. Conclusion

In this paper, we have presented a fast method for comput-
ing tight AABBs in the context of point-based deformations,
with a cost linear in the number of simulation nodes, and
independent of surface complexity. As demonstrated in the
experiments, our method achieves both tighter bounds and
faster culling than previous methods. It is best suited in sit-
uations with intermittent contact, and it will not pay off if
objects undergo continuously very large-area contacts.

We are investigating extensions for topology changes (i.e.,
cutting and fracture) and local resampling of the discretiza-
tion, which incur modifications of the simulation nodes and
surface vertices associated with each AABB. Similarly, our
method cannot handle self-colliding situations, but the inher-
ent difficulties for pruning adjacent primitives in a hierarchi-
cal manner do not suggest the existence of trivial extensions.
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Appendix A: Transformed and Combined AABBs

Proof of Lemma 1: A vertex v0
k ∈ B0 can be defined as a

convex combination of the corners c0 of B0. Then, the trans-

Figure 7: Collisions between Deforming Fishes. Our

method provides a speed-up of 12 times in this scenario. In-

tersecting triangles are highlighted on the right.

formed vertex can be expressed as

vk = T j ∑
i

uic
0
i = ∑

i

ui(T jc
0
i ). (12)

We observe that, due to linearity of the affine transformation,
the transformed vertex can be represented as the same con-
vex combination of the transformed corners, therefore it is
bounded by the transformed AABB.

Proof of Lemma 2: Given AABBs {B j}, with extrema b
γ
j

along the Cartesian direction γ, the convex combination of
the extrema yields a bound bγ = ∑ j w jb

γ
j. We aim to proof

that the same convex combination applied to points in the
AABBs yields a point bounded by bγ along γ. Convex com-
binations on points are applied independently on each co-
ordinate, therefore we have pγ = ∑ j w j p

γ
j. By definition of

bounds, b
γ
j ≥ p

γ
j. From convex combinations, w j ≤ 1. Then,

it is obvious that pγ ≤ bγ. The proof applies also to negative
directions by flipping the sign of point coordinates.

Appendix B: Extreme Corner Evaluation

As shown in section 4.2.2, a corner is defined by one maxi-
mum weight, one based on the convex constraint 1−h−∑ l,
and n − 2 minimum weights. In the closed-form defini-
tion (11) of the extreme bγ, the simulation node with largest
associated value, j1, the one with second largest value, j2,
and the n − 2 remaining nodes are weighted with this set
of weights. This gives us seven choices for the weighting
schemes of the simulation nodes. For one possible scheme,

b
∗ = h j2 b

γ
j2

+(1−h j2 − ∑
j /∈{ j1, j2}

l j)b
γ
j1

+ ∑
j /∈{ j1, j2}

l jb
γ
j,

(13)
we prove that bγ ≥ b∗, and the same applies to the remaining
combinations.

Subtracting terms, we have

b
γ −b

∗ = (h j1 − (1−h j2 − ∑
j /∈{ j1, j2}

l j))(b
γ
j1
−b

γ
j2
). (14)

By definition of j1 as the node realizing the largest value,
b

γ
j1
≥ b

γ
j2

. By definition of h j1 as the maximum weight for

its node, h j1 ≥ (1−h j2 −∑ j /∈{ j1, j2} l j). Therefore, bγ ≥ b∗.
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