
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

© The Eurographics Association 2006
Appeared in Proceedings of the Sixth Eurographics Symposium on Parallel Graphics and Visualization

WinSGL: Software Genlocking for Cost-Effective
Display Synchronization under Microsoft Windows

M. Waschbüsch, D. Cotting, M. Duller and M. Gross

Computer Graphics Laboratory, ETH Zurich, Switzerland

Abstract
This paper presents the first software genlocking approach for unmodified Microsoft Windows systems, requiring
no specialized graphics boards but only a low-cost signal generator as additional hardware. Compared to existing
solutions for other operating systems, it does not rely on any real-time extensions or kernel modifications. Its
novel design can be divided into two parts: First, an external synchronization signal is transmitted over interrupt
lines to a dedicated driver. Second, a user-space application performs the synchronization by inserting or remov-
ing lines to the invisible part of the image. Robustness to potential frame losses is achieved through continuous
consistent timestamping. Tests yield an accuracy of up to ± ½ line deviation from the external signal and a low
CPU load of 2% on current PC systems. Our system has been designed to be compatible with off-the-shelf graph-
ics hardware and digital output devices based on LCD or DLP technology. Our solution can be employed to build
cost-effective VR installations such as large tiled and spatially immersive displays using commodity PC clusters.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Distributed/network
graphics H.5.1 [Information Interfaces and Presentation]: Artificial, augmented, and virtual realities

1. Introduction

Many VR installations combine video signals from multiple
graphics engines to build large tiled or spatially immersive
displays such as CAVETM installations [CNSD93] or the
VarrierTM display [SMG*05]. To achieve a high visual qual-
ity, all involved video output devices require exact frame
synchronization, i.e. genlocking. Recently, commodity PC
clusters were introduced as an alternative to specialized
graphics mainframes, like SGI Onyx systems. Genlocking
in those systems is usually achieved with specialized graph-
ics boards, available e.g. from NVIDIA or 3Dlabs, which
are unfortunately rather expensive. Software genlocking
relying on very little, inexpensive hardware can provide a
cost-effective alternative. Because timing is critical, such
software is to date only available for the Linux operating
system which can be easily extended with real-time capabil-
ities.

This paper explores the possibilities of using software
genlocking on unmodified Microsoft Windows operating
systems having no support for real-time applications. We
provide a robust implementation for synchronizing the

video timings of all PCs in a cluster with a reference clock
signal. Our software is intended to be used in combination
with existing high-level VR middlewares like Net Juggler
[AGL*02] which already provide an application-level frame
synchronization. By additionally synchronizing the video
signals, genlocking improves the resulting display quality.
Besides the aforementioned areas which have output syn-
chronization as their major requirement, other projects like
structured light scanning systems [CNGF04, WWC*05]
require synchronization between video output devices and
cameras. Again, our software can be used there as an inex-
pensive alternative to specialized hardware.

The software architecture comprising a system driver and
a synchronization process permits transparent extension of
any application with genlocking capabilities at run time. A
hardware abstraction layer makes our system applicable
with any standard graphics board. The only special hard-
ware requirement is a low-cost TTL signal generator distrib-
uting the reference clock to the cluster nodes. The employed
synchronization strategy has been carefully developed to
work smoothly with newer digital output devices like LCDs

2 M. Waschbüsch, D. Cotting, M. Duller & M. Gross / WinSGL

© The Eurographics Association 2006

or DLP projectors which are quite sensitive to timing
adjustments.

The paper is organized as follows. After surveying related
work we provide a short overview of the basics of video
timing and present the challenges of synchronizing multiple
video cards without direct hardware support. Based on those
insights we develop a set of design decisions by evaluating
alternatives to synchronize video cards in software and
problems specific to digital output devices. Those build the
basis for our implementation including both software and
hardware design. Implementation issues are described in
detail as we plan to make our software publicly available as
open source. We evaluate our approach on a variety of hard-
ware platforms and provide comparisons with existing solu-
tions. Finally, we summarize our achievements and give an
outlook to future work.

2. Related work

Genlocking has been in use in video studios for a long time
in order to allow for clean cutting, blending and other edit-
ing operations. Apart from specialized hardware, home
computers like the Amiga supported an external video clock
signal and provided cheap alternatives. Some are still in use
today.

Traditionally, VR installations have been built using high-
end graphics mainframes such as those produced by SGI.
Apart from high graphics performance they usually offer a
custom hardware genlocking option enabling for tiled or
active stereo display technologies. However, they are tar-
geted at a specialized high-end market and thus come at a
high price.

As the graphics performance of conventional PCs is rap-
idly increasing, expensive graphics mainframes are succes-
sively replaced by powerful low-cost PC clusters. Software
systems like Net Juggler [AGL*02], Syzygy [SG03] or
Chromium [HHN*02] provide platforms for distributed
execution of virtual reality applications. See Streit et al.
[SCB04] for an extensive overview.

Designed as high-level middleware platforms, they do not
include sophisticated display synchronization methods. Net
Juggler [AGL*02] at least provides software swaplocking to
synchronize framebuffer swaps between the cluster nodes,
using synchronization barriers over Ethernet connections.
The other systems can be complemented by methods such
as those by Bues et al. [BBS*01] or Scheffer et al. [Sch02]
which also implement software swaplocking.

If higher synchronization accuracy is desired, the cluster
nodes can be equipped with high-end graphics cards, e.g.
from NVIDIA or 3Dlabs, which are available with genlock-
ing options. However, the prices of such specialized boards
still cannot compete with commodity PC hardware.

A cheap alternative are software genlocking solutions
which try to synchronize the video timing as close as possi-
ble to a reference clock signal, usually fed through the par-

allel port. SoftGenLock [AGL*03] is an open source
implementation for Linux designed as an extension for the
Net Juggler platform. An improved implementation is avail-
able from Wössner et al. [WA], also for Linux only. Besides
their restriction to the operating system, both systems only
support a limited set of graphics hardware: either NVIDIA
cards only [WA] or boards compatible to the VGA standard
on the register level [AGL*03], both excluding for example
modern ATI boards. Moreover, their synchronization strate-
gies are incompatible with most LCD and DLP display
devices yielding distorted images.

Recently, some novel applications requiring video syn-
chronization have been developed. Waschbüsch et al.
[WWC*05] synchronize projectors and cameras to acquire
three dimensional geometry of dynamic scenes using struc-
tured light patterns. Even more accurate timing is required
by Cotting et al. [CNGF04] who use imperceptible high-
speed structured light projections for alignment of and inter-
action with projected virtual displays. The genlocking hard-
ware those systems are using can be transparently replaced
by our software solution.

3. Video timing

This section provides a short introduction to video timing
and presents the challenges of synchronizing multiple video
cards without direct hardware support.

3.1. Image generation

Throughout this paper the term synchronization will mainly
be used to refer to the synchronization of multiple video
cards, respectively their output signals. The most basic
nature of synchronization in terms of video signals, how-
ever, is the synchronization between the video source, e.g.
graphics card, and the display device, e.g. monitor or pro-
jector.

A frame consists not only of visible but also of invisible
pixels. The latter are a legacy from the times of cathode ray
tube (CRT) monitors. Figure 1 shows how a frame is com-
posed of various video timing areas in a single frame and
indicates the path the cathode ray follows when drawing an
image. The visible area, where the ray is effectively drawing
the image onto the screen—referred to as the active
period—is surrounded by an invisible area which is made
up by the front porch, the back porch and the retrace (or
sync width when referring to the length of the retrace).
While passing this area the ray is disabled.

Those four timing components appear horizontally as
well as vertically, and always in the same sequence, as illus-
trated in Figure 2. The gray area marks one full sequence
comprising a full line (horizontally) or a full frame (verti-
cally). Furthermore, the state of the synchronization signal
is indicated. It is active during the retrace and thus effec-

M. Waschbüsch, D. Cotting, M. Duller & M. Gross / WinSGL 3

© The Eurographics Association 2006

tively causes the ray to return. The purpose of those timing
components for CRT monitors are as follows.
• During the active period the actual image is drawn.
• The front porch follows the active period. It gives the ray

time to go to black before retracing across the screen,
thus avoiding smears.

• During the retrace period the sync signal is active a cer-
tain amount of time (sync width) and the ray moves to
the other side of the screen.

• After the ray has retraced to the other side of the screen
the back porch allows the ray to stabilize again before
drawing the next active period.

Since nothing is displayed during front porch, retrace and
back porch, they are often used to transmit non-image infor-
mation. Teletext for example is transmitted during the verti-
cal retrace of a television signal.

Horizontally, the length of these periods is measured in
pixels. Each pixel has a length (the reciprocal of the pixel
clock) and, thus, the length of a horizontal period is the
number of pixels multiplied with the length of one pixel.
One full line consists of one horizontal active period, one
horizontal front porch, one horizontal retrace and one hori-
zontal back porch. Equation (1) shows how the length tline
of one full line can be computed, where p<index> is the num-
ber of pixels of the corresponding horizontal timing compo-
nent. The duration of a line is the reciprocal of the scan rate:

(1)

Vertically, the length is measured in lines. The length of a
vertical period is the number of lines it consists of multi-
plied with the length of one full line. One full frame consists
of one vertical active period, one vertical front porch, one
vertical retrace and one vertical back porch. The length
tframe of one frame, thus, can be computed as shown in
equation (2), where l<index> is the number of lines of the
corresponding vertical timing component. The duration of a
frame is the reciprocal of the refresh rate:

(2)

The combination of equations (1) and (2) shows that the
length of a frame solely depends on the number of all pixels
and the length of one pixel.

3.2. Synchronizing multiple video cards

From the properties of video timing it is obvious that syn-
chronizing two or more video cards is primarily a question
of either continuously synchronizing their pixel clock or at
least synchronizing the point in time when they start draw-
ing their lines. Hardware genlocking solutions have the abil-
ity to use an external clock as their pixel clock or at least as
a trigger for the vertical retrace.

Without this support in hardware the most obvious
approach is to set the video cards to exactly the same timing
(pixel clock, size of front porch, back porch et cetera).
Then, in theory, the shift between the cards should be elimi-
nated and they should be in sync. However, this approach
fails. The pixel clock is derived from the video card’s clock
generator whose core component is a quartz crystal. Though
quartz crystals are very precise and have a very low toler-
ance limit, it is still not possible to keep two or more cards
synchronized. Tests at a refresh rate of 60 Hz with two iden-
tical graphics cards (GeForce 4 MX) in two identical com-
puters set to identical timings yielded a discrepancy of
0.000086 Hz between both clocks. This resulted in one card
being one full frame ahead of the other after approximately
194 seconds.

Hence, synchronizing multiple video cards is not as easy
as bringing the cards in sync once since it requires continu-
ous control and intervention to keep them synchronized.
Information about the reference signal and about their own
timing therefore has to be known and a method must be
available to change the local video timing. The following
section presents several solutions that fulfill these require-
ments.

4. Design decisions

Synchronizing video cards in software requires first of all
information about the reference and local timing. Secondly,
one needs to modify the local timing in order to catch up or
slow down and thus stay as close as possible to the refer-
ence signal. This section presents and discusses different
solutions fulfilling these requirements. Furthermore, prob-
lems which might arise with software genlocking and digi-

Horizontal

Vertical

Back porch Active period Front porch

…

Back porch

Active period

Front porch

Retrace

Retrace

Invisible areaVisiblearea

Figure 1: Video timing.

tline
1

fpixelclock
-------------------- pactive pfront pretrace pback+ + +().⋅=

tframe tline lactive lfront lretrace lback+ + +().⋅=

Figure 2: Sequence of timing components.

sync signal

inactive

active

ba
ck

 po
rch

ac
tiv

e p
er

iod

ba
ck

 po
rch

sy
nc

 w
idt

h

fro
nt

po
rch

sy
nc

 w
idt

h

ac
tiv

e p
er

iod

4 M. Waschbüsch, D. Cotting, M. Duller & M. Gross / WinSGL

© The Eurographics Association 2006

tal output devices are discussed. Since we impose proper
operation with LCD and DLP devices, these problems are of
particular importance and have to be solved.

4.1. Exchanging the reference clock signal

The reference signal used by a software genlocking solution
generally equals the refresh rate, which means it is usually
within the range of 50 Hz to 100 Hz. In practice, it has to be
exchanged over an I/O port of the computer. Since timing
precision is crucial for genlocking and the costs of addi-
tional hardware should be kept low, the parallel port still
found in most computers is an optimal choice. Its pins can
be accessed directly at a certain memory mapped address
thus making it fast and easy from the software side as well
as from the hardware side. Other ports would either require
more sophisticated hardware or an overhead in processing,
thus increasing costs and decreasing precision.

Interrupt vs. polling. SoftGenLock for Linux [AGL*03]
uses polling to read the reference signal from the parallel
port. To avoid a continuous loop of busy waiting the soft-
ware releases the CPU for most of the time and only wakes
up shortly before the next expected clock signal. However,
the software then is exposed to the good will of the sched-
uler of the operating system and thus only works reliably
under a real-time kernel. A far better approach is the use of
hardware interrupts which have a very high priority also in
non real-time operating systems. Feeding the external clock
through an interrupt pin such as the parallel port’s ACK
line, allows for low response times and thus provides an
efficient and simple way to read the signal with a high preci-
sion.

Signal propagation topology. The existing SoftGenLock
for Linux uses a setup with one master sending its internal
sync signal to multiple slaves. Though sending the signal
itself is easy, detecting the own local timing—and thus
knowing when to send—is not very reliable. If the master
misses its own retrace from time to time, it will send out an
inaccurate clock signal to the slaves, causing problems on
their side. Since software genlocking itself already poses a
multitude of challenges, the decision was made to use a ded-
icated clock generator as reference and run all computers as
slaves.

4.2. Measuring the local timing

Measuring the local timing basically comes down to detect-
ing the point in time when the vertical retrace occurs on the
local video card. The Microsoft DirectDraw API provides a
function WaitForVerticalBlank that will block until the ver-
tical retrace has occurred. However, in most drivers this
function is implemented as busy waiting. Having the CPU
blocked the whole time renders the computer useless and
thus is not an option. Hence, the process has to release the

CPU for a certain amount of time using a wait call. The time
to wait will be chosen as the period length of the external
signal minus some safety margin. On a non real-time oper-
ating system, however, it is not guaranteed that the sched-
uler will reactivate the process in time and thus it is possible
that one or more local retraces are missed. Those cases have
do be detected using appropriate timestamping algorithms.

4.3. Modifying local timing

To synchronize the local video card it is necessary to modify
its timing so it can slow down or catch up compared to the
reference signal. This can be done by changing the invisible
area of the image. By removing or inserting some pixels
(horizontal) or lines (vertical) into one of the timing compo-
nents that comprise the invisible area—front porch, back
porch and retrace—it is possible to change the length of a
frame without changing the visible area. Another way to
achieve this is to modify the pixel clock. These methods
were evaluated with the targeted output device, an NEC
LT 240K DLP projector. Additionally, two DELL LCD flat
panel displays (models FP1700 and FP1701) were tested as
well. All devices have been connected to the analog VGA
output of the graphics board.

According to our experience, digital display devices do
not tolerate small changes in most of the timing compo-
nents, because they have to resample the video signal into
an internal framebuffer. Changes to the different compo-
nents show different distortions in the displayed image. On
increasing or decreasing each of the six invisible compo-
nents in a full frame we observed horizontal or vertical
shifts of the picture generated by the DLP projector. Table 1
lists its reactions, the arrows indicate the direction of the
shift. The granularity for these changes were eight pixels
(horizontal) and one line (vertical). The reactions could
already be noticed after increasing or decreasing one step of
this granularity. Similar effects could be observed on the
other digital displays. Depending on the device, changes to
the vertical front porch of up to ten lines did not show any
reaction.

Table 1: Reaction of a NEC LT 240K DLP projector to dif-
ferent changes to invisible timing components. The direction
of the arrow indicates the observed shift of the picture.

horizontal vertical

increase decrease increase decrease

front porch stable stable

back porch

sync width

M. Waschbüsch, D. Cotting, M. Duller & M. Gross / WinSGL 5

© The Eurographics Association 2006

Modification of the pixel clock did not work at all with
digital display devices. They reacted with jitter and distor-
tion of the whole image.

Thus, it is obvious that the only suitable method for
changing the local video timing is modification of the verti-
cal front porch. It is a very clean way, since the change
occurs after the visible area has been sampled, thus making
it possible to operate the device with a timing it has not been
fully calibrated to but to still have a properly sampled
image. Using this method we also could observe a similar
robust behavior for displays connected to the DVI output of
the graphics board.

5. Implementation

According to the previous considerations we implemented a
robust software genlock solution running on unmodified
Windows 2000 or Windows XP systems. Figure 3 shows the
architecture of the solution and the interaction between all
components. The shaded boxes on the left side are our cus-
tom-built software modules. The kernel-mode sgl driver
measures the external clock signal via an interrupt service
routine and generates appropriate timestamps. Those are
received by the user-mode sgl application which measures
the local timing from the video card driver and does the nec-
essary adjustments by programming the graphics board. The
graphics hardware is accessed through the third-party utility
EnTech PowerStrip and the DirectDraw API of the video
driver, both providing a hardware abstraction layer, making
our system applicable for a variety of graphics boards. A
detailed description of all system components is presented
in the following sections.

5.1. Hardware

The system requires a reference signal to synchronize with.
A square-shaped TTL signal with the frequency according
to the targeted refresh rate is fed into every PC through its
parallel port’s interrupt line at pin 10 on the commonly used
25 pin D-SUB connector. Such a signal can be generated by
an inexpensive off-the-shelf signal generator or a program-
mable microcontroller-based solution, the approach we
have chosen for our implementation.

5.2. Hardware Abstraction Layer

To support a variety of different graphics boards we are
using a hardware abstraction layer comprising the Direct-
Draw API included in Windows as well as the third party
utility PowerStrip.

DirectDraw. The hardware-independent DirectDraw func-
tion WaitForVerticalBlank is used by our solution to detect
vertical retraces.

PowerStrip. PowerStrip [EnT] from EnTech Taiwan is a
shareware utility that allows to change every aspect of video
timing. It supports all native display modes implemented in
the GPU manufacturer’s graphics driver. Besides the graph-
ical user interface, PowerStrip features an API that can be
used to access its functionality from other programs. Since
PowerStrip supports a variety of graphics boards we use it
as a hardware-independent way to read and modify the tim-
ing of the video card.

5.3. SGL Driver

Like most modern operating systems, Windows XP does not
allow user-space applications to directly access hardware.
Therefore we developed a kernel-mode driver to measure
the reference clock signal at the computer’s parallel port. It
is compliant with the Windows Driver Model (WDM)
including plug-and-play and power management support
and thus can be loaded and unloaded during runtime with-
out rebooting.

The driver installs its own interrupt service routine to
keep track of the reference signal via parallel port interrupts.
It maintains a ring buffer of the last 8 timestamps when the
interrupt occurred and a ring buffer of the last 256 interval
lengths between two interrupts. The former is needed by the
application to measure the deviation between the local
video timing and the reference signal. The latter is used to
get a smooth average measurement of the external clock’s
period length which is represented by the sum of all 256
values. At each interrupt call the sum is updated by adding
the current interval length and substracting the oldest one,
yielding a time complexity of O(1).

Time is measured in ticks of the computer’s timer. Under
Windows, this time is referred to as the performance
counter. In recent systems the resolution of the timer equals
the clock of the CPU. On older systems this is not the case
and the timer can have a different—usually lower—resolu-
tion. Many early Pentium 4 computers for example have a
timer with a resolution of 3.579545 MHz.

5.4. SGL application

The main application contains the actual genlocking logic.
It interacts with the driver, PowerStrip and the DirectDraw
API to achieve software genlocking. After initialization it
performs three main steps: Calibrate, BringInSync and

Figure 3: WinSGL architecture.

sgl driver

sgl
application

EnTech
PowerStrip

Video card
driver

user - mode

kernel - mode

parallel port
IRQ line

external
sync

get and set
video timing

wait for
vertical retrace

read external
sync signal

video
output

get and set
video timing

6 M. Waschbüsch, D. Cotting, M. Duller & M. Gross / WinSGL

© The Eurographics Association 2006

KeepInSync. During normal operation KeepInSync will
finally loop forever. If, however, for any reason KeepInSync
cannot proceed, it will return and the main loop will start
over again with Calibrate.

Calibrate. During calibration two reference video timings
are identified that are closest to the external reference sig-
nal—one slower and one faster than the signal’s period
length. They are computed directly from the currently active
timing by modifying its front porch. The number of lines
lfront in the front porch of the faster timing is computed as

(3)

with tline from equation (1). dext is the period length of the
external signal in clock ticks and fperfcount the resolution of
the performance counter. The slow timing will have exactly
one line more.

However, the measurements of the external signal as well
as the timing values provided by the driver might not be
totally precise. Furthermore, the video card’s clock genera-
tor as well as the computer’s clock may have a small toler-
ance. We cope with those inaccuracies in the next steps
using appropriate timing thresholds.

BringInSync. This function brings the computer’s video
signal in sync with the external reference signal. To accom-
plish this, one of the two reference timings computed by
Calibrate is activated and the deviation between the video
signal and the external clock is continuously measured. If
the deviation drops below a threshold BringInSync exits
and passes control to KeepInSync.

The deviation is the signed distance between the local
video signal and the closest reference signal. The applica-
tion first waits for the vertical retrace using the DirectDraw
function WaitForVerticalBlank. As soon as it returns, the
timestamp of the performance counter is stored. Second, the
last 8 reference timestamps from the driver are fetched after
an additional delay of half a period length. This delay is
necessary as the closest external clock tick might occur after
the local retrace. Finally, the deviation is computed using
the reference timestamp with the minimum absolute dis-
tance to the local timestamp. The measurement process is
illustrated on the right side of Figure 4. Additionally, on the
left side, it shows a situation where a local retrace is missed
(at timestamp 401) because the scheduler has not reacti-
vated the process in time. The algorithm still works cor-
rectly in that case since it just waits for the next retrace.

KeepInSync. After the local video signal has been synchro-
nized once, this function loops forever to keep it in sync as
long as no error occurs. Like BringInSync it continuously
measures the deviation between the local and the external
signal. As soon as its sign changes, the reference timings are
swapped, i.e. if the fast timing was active, the slow will
become active and vice versa. In order to allow for
smoother operation, a threshold can be specified which
implements a hysteresis. Figure 5 shows the two timings
measured on an oscilloscope and the threshold range around
the reference signal (lower signal). As long as the local
video signal is within this range no actions will be taken by
the algorithm. When the local signal leaves the threshold
range and thus the absolute value of the deviation exceeds
the threshold, the timings are swapped and the local signal
will move towards the reference signal.

The deviation is measured like in BringInSync. However,
the algorithm here does not wait half a period length after
WaitForVerticalBlank returned but just as long as it is nec-
essary for the next external clock tick to arrive. Hence, reac-
tions can be taken even faster.

6. Results

We evaluate our software genlock using various graphics
boards in different PC systems by measuring the maximum
amount of deviation between the reference clock and the
synchronized vertical retrace. Additionally we quantify the
CPU load caused by our software. All tests were conducted
at a resolution of 1024 by 768 pixels and a refresh rate of
60 Hz. To test the stability of our systems we perform the
measurements on both an idle and a busy CPU. We simulate
computationally expensive applications running on the
same PC by running a process consuming all available CPU
time at default process priority.

Table 2 shows results using various graphics boards in a
state-of-the-art PC running Windows XP SP2. Except for an
older NVIDIA GeForxe4 MX 420 board, genlocking is sta-
ble in all cases with a precision of ± 30 µs which is approxi-
mately ± 1.5 line with regard to the used video timing.
Given the low CPU load of 2-3% our software has a very
low impact on the system’s performance. Even more impor-
tant is the fact that genlocking precision does not decrease

lfront
dext

fperfcount
------------------- 1

tline
-------- lactive lretrace lback+ +()–⋅=

Figure 4: Deviation (d) between local video timing and ex-
ternal reference signal.

t
external

local

401 410 521 531

d = -10missed retrace
scheduled wake-up

actual wake-up

Figure 5: Threshold for deviation.

deviation

threshold range

M. Waschbüsch, D. Cotting, M. Duller & M. Gross / WinSGL 7

© The Eurographics Association 2006

on a busy CPU, leaving the system available for running VR
applications.

Note, however, that the PowerStrip tool needs an addi-
tional CPU load of up to 11% on ATI cards. This presum-
ably results from the manner PowerStrip has to use when
changing video timing of this hardware. When running on
other graphics cards, PowerStrip consumes virtually no
CPU time.

With the GeForce4 board the signal gets out of sync
approximately every 5 to 120 seconds, abruptly cancelling
the currently drawn frame that and starting a new one. This
is presumably a problem of PowerStrip or the NVIDIA dis-
play driver arising after too frequent changes of the video
timing. However, the signal returns back into sync showing
that our algorithm effectively handles delayed wake-ups and
missed timings.

To emphasize that our system really works with off-the-
shelf hardware we have done some further tests with a leg-
acy 800 MHz Pentium 3 PC running Windows 2000 SP4
and two different Windows XP notebooks. Results are given
in tables 3 and 4. The CPU load increases due to the weaker
processors, but the synchronization precision stays as good
as before. We are even able to reach an accuracy of ± 10 µs
on a Matrox board.

We compare our solution with SoftGenLock for Linux
version 2.0a3 which in spite of its alpha status appeared to
be more performant then the last stable version 1.0. The
tests were conducted on a 1.8 GHz Pentium 4 running Man-
drake Linux 10.0 and a NVIDIA GeForce FX 5200 graphics
board using the official NVIDIA drivers for Linux. We used

the Linux kernel version 2.4.25 with RTAI 3.0r4 real-time
extensions [RTA] as well as the vanilla kernels 2.4.25 and
2.6.3. Under the non real-time kernels. best results have
been achieved by using FIFO scheduling, i.e. real-time pri-
ority, and the computer’s real-time clock with a rate of 1024
ticks per second.

Using pixel clock adjustment as video timing adaptation
strategy, SoftGenLock achieves a higher precision than our
method, as can be seen in table 5. As could be expected, the
process is stable with barely no CPU usage under the real-
time kernel. Similar results could be achieved under the non
real-time kernel 2.6.3 at the cost of a higher CPU load com-
pared to our software. Kernel version 2.4.25 containing less
effective scheduling algorithms did not yield a stable syn-
chronization.

Notice, however, that the employed adaptation strategy is
proprietary for NVIDIA cards only and thus does not pro-
vide the flexibility of our approach. The more flexible,
alternative strategy of inserting invisible pixels has been
less robust in our experiments. We could only achieve a pre-
cision of ± 70 µs under the real-time kernel and just frame
synchronization accuracy using the vanilla kernels. More-
over, both timing modes are incompatible with most digital
output devices.

The presented results show that our software solution is
running reliably on unmodified Windows systems with very
low impact on the system’s performance and thus can be a

Table 2: Different video cards on a Pentium 4 with 1.8 GHz
and Windows XP SP2.

CPU idle CPU busy

Graphics card precision load precision load

NVIDIA GeForce4 MX 420 ± 30 µs+ 2% ± 33 µs+ 2%

NVIDIA GeForce FX 5200 ± 34 µs 2% ± 32 µs 2%

ATI Radeon 8500* ± 27 µs 2-3% ± 27 µs 2-3%

ATI Radeon X800* ± 27 µs 2-3% ± 27 µs 2-3%

+ signal sporadically out of sync
* additional CPU load of 8-11% caused by PowerStrip, see text

Table 3: Different video cards on a Pentium 3 with 800 MHz
and Windows 2000 SP4.

CPU idle CPU busy

Graphics card precision load precision load

NVIDIA GeForce3 Ti 200 ± 30 µs 10% ± 36 µs 10%

Matrox MGA-G200 AGP ± 10 µs 10% ± 10 µs 10%

Table 4: Two notebooks with ATI and NVIDIA graphics
chips.

CPU idle CPU busy

Notebook model precision load precision load

IBM T42
Pentium M 1.7 GHz
ATI Mobility Radeon 9600*

± 25 µs 7% ± 25 µs 7%

DELL Precision M60
Pentium M 1.6 GHz
NVIDIA Quadro FX Go700

± 34 µs 10% ± 31 µs 10%

* additional CPU load of 7-11% caused by PowerStrip, see text

Table 5: Comparison of WinSGL and SoftGenLock for
Linux on a 1.8 GHz Pentium 4 with NVIDIA GeForce FX
5200 graphics board.

CPU idle CPU busy

Operating System precision load precision load

Windows XP SP2 ± 34 µs 2% ± 32 µs 2%

Linux 2.4.25 & RTAI 3.0r4 ± 7 µs 2% ± 7 µs 2%

Linux 2.4.25 ± 8 µs+ 20% ± 8 µs+ 20%

Linux 2.6.3 ± 7 µs 10% ± 7 µs 10%

+ signal sporadically out of sync

8 M. Waschbüsch, D. Cotting, M. Duller & M. Gross / WinSGL

© The Eurographics Association 2006

feasible alternative to expensive hardware if no hard syn-
chronization is required. Additional tests with resolutions
up to 2048 by 1536 pixels showed a similar behavior. The
achieved precision is suitable for most display applications.
In combination with framelocking middleware like Net Jug-
gler [AGL*02], it could be used to build VR installations
with active stereo displays. First tests have shown that it
also works in synchronized projection and acquisition sys-
tems [CNGF04, WWC*05].

7. Conclusion and Future Work

We presented a novel software genlocking scheme for
Microsoft Windows operating systems imposing no addi-
tional requirements like real-time extensions. Our system is
compatible with any VGA graphics board and cooperates
smoothly with digital output devices. The implemented
software performs accurately and reliably while only requir-
ing a low CPU load. We plan to publish our code as open
source. Thus, our solution can be used as an inexpensive
alternative to hardware genlocking when no pixel-accurate
synchronization is needed.

Additional improvements could be accomplished in the
following areas:

Frame- and swaplocking: Instead of depending on third
party software we would like to natively provide frame- and
swaplocking mechanisms based on network barriers in our
software.

Multi-head support: We would like to support multi-head
systems which include multi-head graphics cards as well as
systems with more than one graphics card. PowerStrip has
support for multi-head configurations which leaves the
detection of the vertical retrace as last obstacle to imple-
ment multi-head support.

Parallel port alternatives: The standard parallel port is
becoming legacy and is already missing in some new com-
puters. Porting the driver to another interface—like the USB
port for example—would be desirable but imposes some
difficult technical challenges to guarantee an accurate syn-
chronization.

References

[AGL*02] Allard J., Gouranton V., Lecointre L., Melin E.,
Raffin B.: Net Juggler: running VR Juggler with multiple
displays on a commodity component cluster. In Proc.
IEEE VR ’02 (2002), pp. 273–274.

[AGL*03] Allard J., Gouranton V., Lamarque G., Melin E.,
Raffin B.: SoftGenLock: active stereo and genlock for PC
cluster. In Proc. EGVE ’03 (2003), pp. 255–260.

[BBS*01] Bues M., Blach R., Stegmaier S., Hafner U., Hoff-
mann H., , Haselberger F.: Towards a scalable high perfor-
mance application platform for immersive virtual
environements. In Immersive Projection Technology and

Virtual Environements 2001. Springer, 2001, pp. 165–
174.

[CNGF04] Cotting D., Naef M., Gross M., Fuchs H.:
Embedding imperceptible patterns into projected images
for simultaneous acquisition and display. In Proc. ISMAR
’04 (2004), IEEE Computer Society Press, pp. 100–109.

[CNSD93] Cruz-Neira C., Sandin D. J., DeFanti T. A.: Sur-
round-screen projection-based virtual reality: the design
and implementation of the CAVE. In Proc. SIGGRAPH
’93 (1993), pp. 135–142.

[EnT] EnTech Taiwan: PowerStrip. http://www.entechtai-
wan.net/util/ps.shtm.

[HHN*02] Humphreys G., Houston M., Ng R., Frank R.,
Ahern S., Kirchner P. D., Klosowski J. T.: Chromium: a
stream-processing framework for interactive rendering on
clusters. In Proc. SIGGRAPH ’02 (2002), pp. 693–702.

[RTA] Real-Time Application Interface for Linux. http://
www.rtai.org.

[SCB04] Streit A., Christie R., Boud A.: Understanding
next-generation VR: classifying commodity clusters for
immersive virtual reality. In Proc. GRAPHITE ’04 (2004),
pp. 222–229.

[Sch02] Schaeffer B.: Networking and management frame-
works for cluster-based graphics. In Proc. Virtual Envi-
ronment on a PC Cluster Workshop (Protvino, Russia,
2002).

[SG03] Schaeffer B., Goudeseune C.: Syzygy: native PC
cluster VR. In Proc. IEEE VR ’03 (2003), pp. 15–22.

[SMG*05] Sandin D., Margolis T., Ge J., Girado J., Peterka
T., DeFanti T. A.: The VarrierTM autostereoscopic virtual
reality display. ACM Transactions on Graphics 24, 3
(2005), 894–903.

[WA] Wössner U., Aumüller M.: Software-based genlock
for active stereo NVIDIA cards. http://www.hlrs.de/orga-
nization/vis/people/aumueller/genlock.

[WWC*05] Waschbüsch M., Würmlin S., Cotting D., Sadlo
F., Gross M.: Scalable 3D video of dynamic scenes. The
Visual Computer 21, 8–10 (2005), 629–638.

