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Figure 1: Simulation of a cloud-to-ground lightning. The breakdown pattern is computed
iteratively using the dielectric breakdown model on an adaptively sampled grid.

Abstract

We present an adaptive animation method for elec-
trical discharges. Electric discharges can be simu-
lated using the dielectric breakdown model. Reg-
ular discretization of the governing Laplace equa-
tion leads to huge equation systems, and the com-
putational cost of solving the equations quickly be-
comes prohibitive at high resolutions, especially
for simulations in 3D. In contrast, our method dis-
cretizes the Laplace equation on an adaptive octree,
reducing the size of the problem significantly, and
making simulations of high resolution 3D datasets
and even 3D animations feasible.

In order to enhance realism for lightning ani-
mations, we propose a particle simulation that an-
imates the residual positive charge. Thus, interac-
tion of electrical discharges with their surroundings
can be simulated.

1 Introduction

Electrical discharges result from high charge differ-
ences between objects. In nature, we can observe
very appealing visual effects due to electrical dis-
charges, such as intracloud discharges or cloud-to-
ground lightnings.

From the earliest days of cinema, electric dis-
charges have played an important role in movies.
Consequently, there has been some research in the

field of computer graphics related to animation of
electrical discharges. Most of this work is limited
to still images and unsuited for animation purposes.

Recently, Kim and Lin [1] proposed a physically-
based approach to lightning simulation. While
their approach can produce animations, their reg-
ular space discretization generates huge equation
systems that have to be solved many times. For
high-resolution data sets, especially 3D datasets,
the computation time quickly becomes prohibitive.

Our contributions can be summarized as follows:
• We propose an adaptive discretization that dra-

matically reduces the size of the resulting
equation systems. We can thus compute high-
resolution 3D animations, while maintaining a
high-quality physical simulation.

• In order to enable interaction between the elec-
trical discharge and its environment, we simu-
late the residual positive charge (RPC) left be-
hind by individual lightning strokes. Using a
particle simulation, residual positive charge is
influenced by its surrounding media and vice
versa.

The remainder of this paper is organized as fol-
lows: We will first discuss related work in Section 2.
Section 3 presents the dielectric breakdown model
(DBM). In Section 4, our adaptive space discretiza-
tion is described. Section 5 introduces the RPC sim-
ulation and the rendering is described Section 6. Fi-
nally, we show results in Section 7 and conclude.



2 Related Work

One of the first quantitative investigations of the ge-
ometry of lightning strokes [2] was done by Hill [3].
LeVine and Gilson [4] analyzed photographs and
investigated branching and segment length.

As the physics of an electric breakdown is com-
plicated and computationally expensive to simulate,
Reed and Wyvill [5] propose a method that exploits
the geometrical properties and uses a probability
function to control the branching. They concatenate
linear segments with direction chosen from a nor-
mal distribution with mean 16 degrees and variance
of 0.1. Their model was extended by Glassner [2]
who extracts parameters for branch length, branch
frequency, and branching angle from a data set of
40 digitized strokes. In a second pass, they enhance
the structure by adding "tortuosity". Kruszewski [6]
uses a procedural model based on random binary
trees for constructing the branching pattern. All
of these models do not take the electric field and
charge distribution into consideration.

In computer graphics, the dielectric breakdown
model (DBM) was first used by Sosorbaram et al.
[7] to generate branches of electrical discharges, al-
though the potential field was not computed based
on the Laplace equation. Kim and Lin [1] extend the
method to simulate sustained electrical discharges
and solve the full Laplace equation.

The DBM has also been used in the field of geo-
physical research (meteorology and atmospheric
dynamics) [8].

Recently, Kim et al. [9] proposed a particle-
based method for fast fractal growth, but their ap-
proach does not solve the Laplace equation.

A good overview of solution techniques for the
Laplace and Poisson equation on regular domains
can be found in [10], on irregular domains see e.g.
[11, 12, 13]. Furthermore, multigrid methods [14]
and adaptive mesh refinement techniques [15, 12]
allow efficient resolution and lower the computa-
tional effort.

The visualization of lighting is challenging
mainly because of atmospheric scattering that cre-
ates the typical glow of lightning channels. Dobashi
et al. [16] present a method that precomputes at-
mospheric effects, and stores the intensity of scat-
tered light in a lookup table. Other methods use ei-
ther a simple volume rendering approach [7], or are
adding a color contribution from lightning using a
shading method designed for raytracing [5]. Simi-

lar to Kim and Lin [1], we use the atmospheric point
spread function (APSF) introduced by Narasimhan
et al. [17] which describes the glow of a point light
source under specific weather conditions.

3 Physically-based Simulation of Elec-
trical Discharges

The most frequent natural discharge phenomena
during a thunderstorm is negative cloud-to-ground
lightning, where there is a high concentration of
negative charge at the bottom of the cloud. If the
charge difference between cloud and ground passes
a certain threshold, an electrical breakdown occurs.
Stepwise, small lightning channels evolve from the
cloud toward the ground, forming a forked pat-
tern. As soon as one of these channels reaches the
ground, a discharge (lightning stroke) takes place.
Typically, lightning consists of several consecutive
strokes, where the first is called stepped leader and
the successive strokes dart leaders. As Kim and
Lin [1] has shown, this can be simulated using a
modified version of the dielectric breakdown model
(DBM) developed by Niemeyer et al. [18].

In the remaining section, we will describe the
original DBM, which is only capable of simulating
stepped leaders, and it’s modification by Kim and
Lin, that also takes dart leaders into account.

3.1 Dielectric Breakdown Model
The basic assumption of the DBM is that the di-
electric breakdown of insulators depends on the lo-
cal electric field. The emerging discharge channels
show a strong tendency to branch into complicated
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Figure 2: Schematic illustration of the DBM. From
left to right: (a) Initial boundary conditions for
a downward negative lightning (blue φ = 0, gray
φ = 1). Blue points indicate the set N of possible
breakdown locations. (b) shows the breakdown af-
ter one iteration, (c) after it has reached the ground.
(d) shows the initial configuration for simulating a
dart leader. Residual positive charge is marked or-
ange.



stochastic patterns, with a fractal dimension of ap-
proximately 1.7 [18].

Theses patterns can be simulated on a discrete
lattice, where φi captures the electric potential of
node ni. The breakdown is modeled as an itera-
tive stochastic process, where the probability of a
breakdown is related to the electric potential field,
which is computed by solving the Laplace equation.
Clouds, ground, and the already computed break-
down are treated as boundary conditions (see col-
ored cells in Figure 2). At the beginning of the
simulation, a subset N of nodes is selected, which
mark possible locations where a breakdown could
occur (indicated as blue dots in Figure 2 (a)). In
each step, one node ns ∈ N is selected as location of
the next breakdown, and N is updated by removing
the selected node ns and adding all adjacent nodes
of ns that are not yet part of the lightning (Figure 2
(b)). During the simulation, all nodes that are part of
the lightning stroke are considered as equipotential
(φlightning = 0), and ns is added to the set of bound-
ary cells.

The probability p that a node of N is selected is
given by the equation

p(ni) =

{
(φi)η

∑k∈N(φk)η if ni ∈ N

0 otherwise.
(1)

The user-defined parameter η controls the rela-
tionship between potential field and probability. A
low value leads to dense branching, and with in-
creasing η the branching density decreases. For a
detailed discussion of this parameter see [19, 20].
To draw a node, we assign each node an interval in
[0,1] according to equation (1) and use a uniform
random number generator. This yields the propa-
gation of the lightning and at the same changes the
boundary condition, therefore the electrical field φ

has to be recomputed by solving the Laplace equa-
tion ∇2

φ = 0 in each step. The simulation stops
as soon as the lightning reaches the ground or any
other cell that is marked as a boundary with φ > 0.

As already mentioned, initial charge distribu-
tion and the already computed breakdown pattern
are treated as boundary conditions. Depending on
the lightning type we want to simulate, the initial
charge distribution has to be set appropriately. In
case of negative cloud-to-ground lightning, as il-
lustrated in Figure 2 (a), cells with potential φ = 0
are placed at the position of the cloud. All adja-
cent cells to the cloud are handled as locations of

possible initial breakdowns are are therefore added
to N. Cells at the ground are set to φ = 1. Note
that due to the flexibility of arbitrarily setting the
boundary conditions, a very wide range of light-
ning types and electric breakdowns can be simu-
lated, such as cloud-to-ground, intracloud, cloud-
to-cloud, or ground-to-cloud lightning [7].

Once the initial stepped leader has shaped, we
adopt the method by Kim and Lin [1] that hypothe-
sizes that residual positive charge along the path of
the stepped leader causes dart leaders to follow ap-
proximately the path of the initial leader. The Pois-
son equation ∇2

φ = −4πρ allows the computation
of the potential field φ under consideration of this
effect [1, 21]. Residual positive charge is quantified
by ρ. The bigger ρ is for a node, the stronger it will
attract a new dart leader. Poisson equation and its
homogeneous form, the Laplace equation, are iden-
tical except for the right hand side, so both can be
handled by the same routine if the residual positive
charge is initialized appropriately. Figure 2 shows a
schematic illustration of a downward negative light-
ning simulation.

4 Adaptive Discretization

Observing that the behavior of the potential field φ

is smooth and high spatial resolution is only needed
close to the evolving lightning for propagation com-
putation, we propose an adaptive discretization of
space.

Two simple rules govern the generation of an
adaptive grid. Cells adjacent to fixed potentials,
such as the breakdown pattern, must have the small-
est possible size, and the edge length of neighbor-
ing cells differ at most by a factor of two. Figure 3
shows an example of the adaptive discretization in
2D.

Assigning the smallest possible size to cells adja-
cent to fixed potentials guarantees that we can simu-
late the growth of the stepwise breakdown as exact
as possible. The set N of possible breakdown lo-
cations is always in cells of the highest resolution.
Limiting the edge length differences by a factor of
two results in smooth changes of the local sampling
density.

We implemented the data structure using an oc-
tree and subdivide the cells according to the rules
mentioned above. The initial charge distribution is
inserted at the finest level.



Figure 3: Adaptive Discretization in 2D. The dis-
charge pattern is marked blue, positive charges at
the ground gray, and the potential field φ red. Note
that the size of adjacent cells differs at most by a
factor of two.

Guaranteeing on the one hand highest resolution
close to the evolving lightning while on the other
hand saving memory and CPU resources due to a
coarser representation in the remaining computa-
tional domain enables us to animate thunderstorms
within a reasonable amount of time.

4.1 Interpolation
For solving the Laplace or Poisson equation, the
second derivative is approximated using a seven-
point finite differences scheme in 3D [22]. On a uni-
form grid, it uses the values of the center of the cell
and it’s direct neighbors, which all have the same
distance from the center value, as shown in Figure
4 (a). In our data structure adjacent cells can be
smaller or larger, thus we interpolate values at the
locations needed for the finite difference scheme.

A straightforward solution would be to interpo-
late values on each side of the cell that all have the
same distance to the center. However, in case of
smaller neighbor cells, computing the interpolation
can involve a large number of smaller cells in the
neighborhood, as illustrated in Figure 4 (b). Using
this interpolation in combination with finite differ-
ences for setting up the Laplace or Poisson equa-
tion can result in a non-sparse system. Therefore
we use a seven-point finite difference scheme that
takes different distances to adjacent values into ac-

(a) (b)

(c) (d)

Figure 4: Setting up the finite-difference approxima-
tion for the cell with the bold black dot. (a): Finite
differences using equal distances to all neighbors.
(b): Computing the average at the center position
of a fictive equally sized adjacent cell could involve
a large number of cells. (c): In case of smaller ad-
jacent cells, the value at the position of the red dot
is approximated. (d): In case of a larger adjacent
cells, the value is shifted.

count [22], which gives us more freedom for choos-
ing the interpolation location:

∇2φ= ∂
2

φ(x,y,z)
∂x2 + ∂

2
φ(x,y,z)
∂y2 + ∂

2
φ(x,y,z)
∂z2 .

∂
2
φ(x,y,z)
∂x2 ≈ 2φ(x+hr ,y,z)

(hl+hr)hr
− 2φ(x,y,z)

hl hr
+ 2φ(x−hl ,y,z)

(hl+hr)hl
,

(2)

where hl and hr are the distances to the
left respectively right neighboring cell centers;
∂

2
φ(x,y,z)/∂y2 and ∂

2
φ(x,y,z)/∂z2 are defined sim-

ilarly.
This scheme requires that for each cell there is

exactly one neighboring point on each side, lying
on the axis which is going through the center of the
cell.

In our octree-based discretization, in case of
smaller neighboring cells, we take the average of
the adjacent cells, as shown in Figure 4 (c). In case
of a larger neighboring cell, their centered value is
shifted slightly (Figure 4 (d)). For each cell, there
is now exactly one neighboring point on each side,
going through the axis of the center of the cell. By
using only adjacent cells for the interpolation, we
can guarantee that the number of involved cells is
limited, because the size of adjacent cells differs at
most by a factor of two.

Substituting the finite-difference approximation
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Figure 5: Adaptive sampling: Number of cells
during the simulation of a downward negative
lightning (stepped leader, computational domain
256x256x256). For comparison: Uniform sampling
1.6×107 cells.

(2) into the Possion or Laplace equation leads
to a sparse non-symmetric linear equation system
Aφ = b, which is solved using a GMRES solver
[23].

4.2 Performance and Analysis
Figure 5 shows the number of cells, which is equal
to the number of unknowns in the equation system,
using an adaptive sampling in a 256× 256× 256
computational domain during the simulation of a
cloud-to-ground lightning. Compared to a uniform
sampling, the number of unknowns for solving the
Laplace/Poisson equations is reduced by more than
98% at each step of the simulation.

We computed the average relative error Rφ of
the potential field in cells adjacent to the discharge

323 643 1283

mean Rφ 0.04128 0.04004 0.04348
var Rφ 0.00139 0.00149 0.00152
E[Rp] 0.06725 0.05058 0.06397

Table 1: Relative error Rφ of the adaptive sampling
compared to an uniform grid. For each grid size, we
computed the relative error of the potential field φ

adjacent to the discharge pattern at the beginning,
in the middle, and at the end of the simulation of a
downward negative lightning. E[Rp] is the expec-
tation value of the relative errors of the probability
distribution Rp.

pattern compared to an uniform sampling. Cells
adjacent to the discharge pattern are the locations
of possible breakdowns N, and the probability of
breakdowns is computed solely based on the poten-
tial field of these cells (see equation 1), therefore
only the field at these locations is relevant for our
simulation. We simulated the stepped leader of a
cloud-to-ground lightning and computed the rela-
tive error at the end of the simulation. Our results
summarized in Table 1 show that all average rel-
ative errors are smaller than 5%. Since lightning
propagation is a stochastic process, the errors have
no noticable influence on the result. We also list the
expectation value E[Rp] of the relative error of the
probability distribution Rp. The probabilities are
computed using equation (1) with η = 2.

5 Residual Positive Charge Simula-
tion

After each lightning stroke, residual positive charge
(RPC) remains along the path of the lightning.
RPC influences the breakdown pattern of successive
lightnings because it changes the potential field φ.
We assume that RPC are particles carrying positive
charge. As these particles are moved, for example
by air flow, the electric field, and hence subsequent
lightning strokes, are influenced by their surround-
ings.

We predict the movement of the RPC using a par-
ticle system [24]. After a lightning stroke is com-
puted, the amount of RPC along its channels is de-
termined, and for each cell that contains RPC, par-
ticles are generated. The goal is to determine the
position of the RPC at the time of the next break-
down. The particles are advected using a velocity
field computed by a simple fluid simulation, and
then mapped it back into our adaptive data struc-
ture. To place the RPC as accurately as possible, all
cells at the location of RPC particles are subdivided
to the finest level. Figure 6 illustrates the RPC sim-
ulation.

6 Rendering

We adapt the method of Kim et al. [1] and
Narasimhan and Nayar [17] to model multiple scat-
tering of light in the presence of bad weather or
mist. The typical glow around a point light source
captured by a camera can be described with an an-
alytical expression, called the Atmospheric Point



Spread Funcion (APSF). It can be controlled by two
intuitive parameters, a scale factor σ that denotes
the fraction of flux lost within a unit volume of the
atmosphere, and an approximate forward scatter-
ing parameter q that captures the weather condition,
such as normal air, small aerosols, haze, mist, fog,
or rain. The glow of a lightning is made up by the
sum of a multitude of point light sources with vary-
ing intensities I along the discharge pattern.

Intensities are assigned using a heuristic [1]. The
discharge pattern is interpreted as a tree structure,
and the line segments connecting the nodes are clas-
sified into three different categories: main channel,
secondary channels and side channels. For each of
these categories an intensity value is manually as-
signed.

In previous work [1, 17] it was assumed that the
distance to all point light sources is approximately
the same, and the image of a light source of arbitrary
shape was written as a convolution (I · S) ∗APSF ,
where S represents the shape function that is con-
stant over the extent of the light source. This as-
sumption does not hold in our case, because our
simulation takes place in 3D and distances between
camera and different parts of the lightning could
vary significantly. We therefore split our discharge
pattern into several layers depending on the distance
to the camera, and compute the APSF for each of
them independently. Based on the superposition
principle of light these layers are added up result-
ing in the final image of the lightning.

To combine a lightning with an arbitrary scene,
we add point light sources at the lightning position
to the scene. The lightning and the scene are ren-
dered independently and are combined using the in-
tensities in the lightning image as alpha values.

(a) (b) (c) (d)

Figure 6: RPC Simulation: (a) After a lightning
stroke RPC remains in the air. (b) For each cell
that contains RPC, particles are generated. (c) Ad-
vection of particles along air flow. (d) Particles are
mapped back onto grid before simulating the next
lightning stroke.

7 Results

We simulated an ascending electric arc between two
wires using the RPC simulation. The electric arc
moves upwards, because air along the path of an
electrical discharge is heated up by the current and
can reach temperatures up to 28,000 kelvin [25].
This leads to air movement that influence the RPC
and consequently the electric field. An example of
this effect is shown in Figure 7.

As initial condition, charges are inserted for mod-
eling the wires. The left and right wire is set to the
potential φ = 0 and φ = 1 respectively. All cells
belonging to the left wire are considered as places
for the initial breakdown, so the discharge pattern
could start growing from each of these cells. In our
example, as expected, the first discharge takes place
where the two wires are closest to each other.

Along the lightning stroke, particles representing
the RPC are generated. A simple fluid simulation
computes a velocity field which we apply to the
RPC. Particles that leave the computational domain
are deleted, and we neglect particle-particle interac-
tions in our simulation.

Because the velocity field points predominantly
upward and the RPC attracts the growing discharge
pattern during each breakdown, the animation of
several consecutive breakdowns results in an as-
cending electric arc.

Figure 8 shows renderings of negative cloud-to-
ground lightnings with η = 2. The background in
Figure 7 was created with POV-Ray.

Table 2 shows the performance of our algorithm
computing a negative cloud-to-ground lightning,
measured on a 2.8 GHz Pentium 4 CPU with 1 GB
of RAM.

643 1283 2563

# Constr. Cells 4316 17436 69123
Comp. Time [s] 102.7 1895.1 22089.3

Table 2: Timings for the negative cloud-to-ground
lightning (η = 2, precision 10−4) scenario, in sec-
onds. The number of constrained cells belonging to
the lightning pattern and initial charge distribution
is an indicator for the complexity of the simulation.



8 Conclusion

We have presented an adaptive animation technique
for electrical discharges. It allows fast physically-
based lightning simulations providing high resolu-
tion 3D datasets. As the analysis of the relative er-
ror shows, the potential field computed based on the
adaptive discretization comes close to the original
method using an uniform sampling and has no visi-
ble effect on the result. However, the computational
speed outperforms the uniform grid significantly,
making 3D animations feasible. Furthermore, we
proposed the simulation of residual positive charge
using a particle simulation, which permits us to re-
produce the effects of air flow on continuous elec-
trical discharges.

Our adaptive discretization scheme can also be
applied to other Laplacian growth phenomenas that
are typically simulated using the DBM, such as ice
and river formation, fracture, or tree growth. An
interesting direction for future work will be to re-
search such applications.
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Figure 7: Ascending electric arc between two wires.

(a) (b) (c)

Figure 8: Downward negative lightnings. (a) and (b) are simulated on a 1283, (c) on a 2563 grid.


