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Abstract
We present efficient data structures and caching schemes to accelerate ray-surface intersections for deforming
point-sampled surfaces. By exploiting spatial and temporal coherence of the deformation during the animation,
we are able to improve rendering performance by a factor of two to three compared to existing techniques.
Starting from a tight bounding sphere hierarchy for the undeformed object, we use a lazy updating scheme to adapt
the hierarchy to the deformed surface in each animation step. In addition, we achieve a significant speedup for
ray-surface intersections by caching per-ray intersection points. We also present a technique for rendering sharp
edges and corners in point-sampled models by introducing a novel surface clipping algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling–Surface Representations I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism–Raytracing

1. Introduction

Point-based surface representations have recently become
popular in computer graphics and geometric modeling
[AGP∗04]. As an alternative to traditional surface models,
such as spline patches or polygonal meshes, they allow for
simple and efficient dynamic re-sampling due to minimal
consistency requirements [PKKG03]. At the same time, their
explicit nature supports highly detailed surfaces, which is
crucial for realistic computer animations in feature films
and games. These two properties make point-based surface
representations particularly suitable for animating complex
deformable objects, as has recently been demonstrated in
[MKN∗04], [CZ04], and [PPG04].

To visualize point-sampled surfaces, splat-based ap-
proaches have been most popular, e.g., [RL00], [ZPvG01].
However, as has been shown in [AAN05], splatting re-
sults in poor image quality under magnification. Moreover,
splatting-based rendering algorithms typically do not ac-
count for secondary effects such as shadows or reflections,
which greatly enhance the realism of an animation. Ray-
tracing, on the other hand, naturally incorporates these sec-
ondary rendering effects. Various authors have proposed ray-
tracing schemes for static point-sampled surfaces ([SJ00],
[AA03a], [AA03b], [WS03]) using static data structures,
such as kd-trees, octrees, or bounding sphere hierarchies to

improve the performance of ray-surface intersection calcu-
lations.

In this paper we propose a new raytracing algorithm for
rendering deforming point-sampled surfaces, and address
the challenges that arise when balancing the efficiency of dy-
namic updates vs. spatial queries on the data structure used
to accelerate the intersection tests.

We assume a reduced deformation model, where the dis-
placement of the object surface can be expressed with sig-
nificantly fewer parameters than the number of degrees of
freedom of the surface itself. A typical example is the free-
form deformation approach of [MKN∗04], where a high-
resolution surface is embedded within a low-resolution sim-
ulation domain. We render such a deformable model by con-
structing and maintaining a bounding sphere hierarchy to ac-
celerate ray-surface intersections. Rendering performance is
greatly improved by exploiting different aspects of spatial
and temporal coherence:

• The compact representation of the deformation allows ef-
ficient local updates of the sphere hierarchy by bounding
the deviation of the displacements of the surface elements.

• The surface representation and corresponding bounding
sphere tree are maintained in a lazy fashion when the ob-
ject is deformed. Only those elements are updated that po-
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tentially experience a ray intersection, while other parts of
the model remain unchanged.

• For each ray, we first test against the intersected sphere
node from the previous time step. This gives a good up-
per bound for the current intersection depth, significantly
culling the number of spheres to be updated and tested for
intersection.

We also present a novel technique for rendering sharp
edges and corners in point-sampled models by introducing
a new surface clipping algorithm.

2. Related Work

Raytracing Point-Sampled Geometry. Schaufler and
Jensen [SJ00] were the first to propose a ray-surface in-
tersection algorithm for point-sampled surfaces. They de-
fine the intersection as a weighted average of disk inter-
sections within a cylinder around the ray. This leads to a
slightly view-dependent surface, which can be problematic
when rendering animations. Adamson and Alexa [AA03b]
presented a different technique based on an iterative projec-
tion procedure. The ray is intersected with spheres which en-
close the surface, and inside the spheres with local polyno-
mial surface approximations. As a result, their surface def-
inition is view-independent. Our surface intersection algo-
rithm is based on their follow-up work [AA03a] (see also
[AA04]) on approximating and intersecting surfaces from
points. The surface is implicitly defined based on normal di-
rections and weighted average point positions. The core of
the intersection algorithm consists of three steps. First, a sup-
port plane is constructed using an approximate normal direc-
tion. Then a polynomial approximation is constructed over
the support plane serving as a local approximation of the
surface. Finally, the ray is intersected with this polynomial.
This procedure is repeated until convergence. As a spatial
data structure they use a bounding sphere hierarchy which
has shown to be very effective. [AAN05] proposes an exten-
sion of this scheme to speed up ray-surface intersections by
exploiting image- and object-space coherence. Surface inter-
section points are used to construct view-dependent bilinear
surface approximations, which are rendered as quads on the
GPU using forward projection. These patches are reused in
consecutive frames, leading to performance gains of up to
50% for non-deforming objects.

Accelerated Raytracing. As reviewing all of the acceler-
ation techniques is out of the scope of this paper we refer
to [Gla88], [Gla89], [Shi00], and [3DO] and the excellent
state of the art report on real-time raytracing by Wald and
coworkers [WPS∗03]. Most relevant to this paper is the sec-
ond part of their report where various approaches to acceler-
ate raytracing in dynamic environments are discussed, e.g.,
[RSH00], [LAM01] and [WBS03]. However, most of this
work focuses on (hierarchical) motion, where whole groups
of triangles are moved under the same affine transformation.

Our technique on the other hand focuses on highly detailed
point-sampled surfaces which deform in a free-from manner.

We exploit temporal coherence using a lazy updating
scheme similar to [MSH∗92]. They use an octree accel-
eration data structure, which is only built up to a certain
level in each frame. Nodes at lower levels are only updated
when necessary. In our setting, sphere nodes of the bounding
sphere hierarchy and surface patches are only updated when
queried, i.e. tested for ray intersection.

A caching scheme similar to ours is used in [AK87],
where recently referenced hypercubes are cached and re-
trieved for intersection testing in the next time step. We store
per-ray intersected sphere nodes from frame to frame and
test cached spheres for intersection first. This allows efficient
culling of unnecessary sphere nodes for increased rendering
performance.

Finally, the update of our bounding sphere hierarchy is
inspired by the technique presented in [JP04]. By bounding
the deformation of the surface within each sphere, a conser-
vative estimate of the updated sphere radius can be computed
for each time step.

3. Surface Animation

Our method for rendering deformable objects is based on
the animation framework of [MKN∗04] that allows physics-
based simulation of elastically and plastically deforming
solids. To solve the equations of continuum mechanics, the
simulation volume is discretized with a set {p j} of simula-
tion nodes (see Figure 1, left). The boundary surface of the
solid is represented by a (typically much larger) set {si} of
surface elements (surfels). When deforming the material, the
displacements of the surfels are determined from spatially
adjacent simulation nodes using a free-form deformation ap-
proach. In principle, however, our rendering algorithm can
be used with any animation method that applies the idea
of an embedded surface, e.g., mass-spring based systems or
FEM-based approaches.

Initially, we assign to each surfel si a set of neighboring
simulation nodes p j (see Figure 1, middle). After an anima-
tion step, the new position x′si of si is computed using a first
order accurate approximation of the displacements up j of the
neighboring simulation nodes p j as [MKN∗04]:

x′si = xsi +∑
p j

ωhi
xsi ,xp j

(up j +∇T
u up j dxsi ,xp j

), (1)

where dx,y = y − x, ωh
x,y = ωh

x,y/∑y ωh
x,y, and ωh

x,y is a
smoothly decaying weight function with support radius h.
We use the compactly supported radial spline function

ωh
x,y = ω(r) =

{

1−6r2 +8r3 −3r4 r ≤ 1
0 r > 1,

(2)

where r = (‖x− y‖)/h. We reuse the MLS approximation
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Figure 1: Left and middle: the surfels are embedded in
the simulation domain. Right: bounding sphere. Note that
the simulation nodes are not necessarily contained by the
sphere.

of ∇uup j , which is computed when solving the continuum
mechanics equations as described in [MKN∗04]. Similar to
[PKKG03], both the surfel center and its tangent axes are
deformed, yielding the deformed surfel normal n′

si .

By de-coupling the sampling of the simulation domain
from the sampling of the boundary surfaces, this method al-
lows efficient animation of highly detailed models using the
smooth displacement field u. We exploit the implicit spatial
coherence for efficient updates of the bounding sphere hier-
archy, as will be discussed below.

4. Rendering Framework

In this section, we describe the rendering framework that we
use to generate subsequent frames of an animated model. We
first discuss the bounding sphere hierarchy used to accelerate
ray-surface intersections. Next, we outline the ray-surface
intersection algorithm which is at the core of our rendering
algorithm. We describe how rendering time can be reduced
by caching of per-ray intersected sphere nodes, before we
introduce clipping relations for rendering sharp edges and
corners. Finally, we discuss how these individual pieces are
integrated to yield an efficient raytracing algorithm for de-
forming point-sampled surfaces.

4.1. Bounding Sphere Hierarchy

To accelerate the ray-surface intersection tests, we use a
bounding sphere hierarchy [AA03b]. The hierarchy is only
built once for the undeformed object and dynamically up-
dated in each time step to conform with the deformed ob-
ject [JP04].

4.1.1. Initial Sphere Hierarchy

The hierarchy is built top-down starting with a sphere
wrapped around all surfels. Each sphere is recursively split
into two child spheres until eventually a sphere contains only
one single surfel. Splitting is done according to the plane de-
fined by the longest axis of the surfels’ bounding box, simi-
lar to [RL00]. We compute the initial sphere centers xc and
optimal radii R using the miniball algorithm of [Gar99]. For
each sphere bounding surfels si, we also keep a list of the
simulation nodes p j that define the displacement of the sur-
fels si (see Figure 1, right).

4.1.2. Sphere Update

As building a new sphere hierarchy in each time step is com-
putationally too expensive, we dynamically update the hier-
archy built for the undeformed object using the deformation
field u(x) (see also [JP04]).

Center Update. The displaced sphere center x′c is computed
in the same manner as we compute the displaced surfel po-
sitions:

x′c = xc +∑
p j

ωR
xc,xp j

(up j +∇T
u up j dxc,xp j

) (3)

≡ xc +uc. (4)

Radius Update. The new radius R′ is conservatively esti-
mated from the maximal distance between the deformed sur-
fels (Equation 1) and the new sphere center (Equation 4) us-
ing basic linear algebra and the triangle inequality:

R′ = max
si

‖x′si −x′c‖2 (5)

= max
si

‖(xsi −xc)+∑
p j

ωhi
xsi ,xp j

(up j −uc)

+∑
p j

ωhi
xsi ,xp j

∇T
u up j dxsi ,xp j

‖2 (6)

≤ max
si

‖xsi −xc‖2 +∑
p j

max
si

|asi,p j |‖up j −uc‖2

+∑
p j

max
si

‖bsi,p j‖2‖∇
T
u up j‖F (7)

≡ R+∑
p j

A jU j +∑
p j

B j∇U j (8)

= R+AT U+BT∇U (9)

where asi,p j = ωhi
xsi ,xp j

, bsi,p j = ωhi
xsi ,xp j

dxsi ,xp j
, and

‖∇T
u up j‖F is the Frobenius norm of the directional gradient

of the displacement. We can bring uc into the summation
since the weights ωhi

xsi ,xp j
sum up to 1 by construction. The

entries A j and B j remain constant during the animation and
can thus be precomputed once in the reference system (see
also Section 4.1.3). Note that the center and radius updates
have time complexity linear in the number of simulation
nodes associated with a bounding sphere, not in the number
of bounded surfels. This is important as the number of
simulation nodes is typically much smaller than the number
of surfels. The radius update is always done with respect to
the initial (optimal) bounding spheres, i.e., the radius can
both increase and decrease over time. The sphere hierarchy
thus maintains its tight fit even for highly elastic materials
that expand and shrink significantly during an animation.

The above updates of the sphere center and radius are only
performed for non-leaf nodes. Since each leaf node bounds a
single surfel, we can use the updated surfel’s position (Equa-
tion 1) and compute the updated radius from the surfel’s de-
formed tangent axes.
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Figure 2: Left: the displacements are computed relative to
the reference system. Right: the displacements are computed
relative to the optimally transformed reference system. This
results in smaller relative displacements.

4.1.3. Optimal Rigid Transformation

As illustrated in Figure 2, the displacements u of surfels and
simulation nodes are computed relative to the undeformed
positions x. The latter are defined in the reference system
(material coordinates), while the displaced positions x′ are
specified in the deformed system (world coordinates). Al-
though the bounding radius update of Equation 9 is invariant
under uniform translations (since then U j = 0 and ∇U j = 0),
the sphere radii grow under uniform rotations.

We can address this problem by factoring out the optimal
rigid transformation. After each iteration, we transform the
reference system rigidly by computing the optimal global ro-
tation and translation based on geometric algebra [LFDL98],
similar to [TW88]. This will align the transformed reference
system as closely as possible with the deformed system, re-
sulting in smaller U j’s and ∇U j’s and thus in smaller bounds
for the updated sphere nodes (see Figure 2, right).

Translation. The optimal translation t = x′m −xm is the dif-
ference between the centers of mass x′m = ∑p j

mp j x′p j and
xm = ∑p j

mp j xp j of the displaced and the reference simula-
tion nodes respectively, where mp j = mp j /∑p j

mp j , and mp j

is the mass of a simulation node p j .

Rotation. The optimal rotation R = VUT is computed in a
least squares sense by computing the singular value decom-
position of F = UWVT , where

F = ∑
p j

m2
p j (xp j −xm)(x′p j −x′m)T . (10)

This linear transformation is applied to the reference po-
sition of all simulation nodes, surfels and bounding sphere
centers when used during raytracing. The quantities dx,y and
ωh

x,y remain constant under rigid transformations and there-
fore the entries A j and B j of Equation 9 need to be computed
only once as discussed before.

4.1.4. Tightness of Radius Update

For the example given in Figure 6, the updated radius is on
average 4 times larger than the radius of the smallest sphere
wrapped around the deformed points (using the algorithm of
[Gar99]). If we look at the lowest levels, the ratio is only 1.0,
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Figure 3: Average ratio of updated sphere radius and radius
of smallest enclosing sphere at all levels (level 0 is the root
node) for the cannon ball armadillo sequence (Figure 6).

R′′

x′cx′c
R′

R′
1

x′c1

R′
2 x′c2

Figure 4: Left: The parent and child spheres are updated
according to Equations 4 and 9. Right: In this case, a tighter
bound for the parent’s radius can be found by looking at the
children’s radii using Equation 11.

1.2, 1.2, . . . . However, if we go up the hierarchy, the radius
estimate depends on more and more simulation nodes and
therefore this ratio increases to up to 20.0 for the root node
(see Figure 3). In our setting, this is somewhat problematic
as these spheres are also the biggest ones and are thus hit by
many rays during raytracing.

To alleviate this problem, we compute a second conserva-
tive radius estimate R′′, and choose the smallest of the two
estimates to update the bounding sphere. Assume that both
child nodes of a sphere have already been updated in the
current animation step. Let x′c1 , x′c2 and R′

1, R′

2 be the corre-
sponding updated sphere centers and radii, respectively. We
know that the surfels in the parent node are bounded by the
union of the two child spheres. As illustrated in Figure 4, we
can thus compute R′′ as

R′′ = max(‖x′c −x′c1‖+R′

1,‖x′c −x′c2‖+R′

2). (11)

Since the time complexity of this expression is constant,
the additional radius estimate comes essentially for free, as
compared to the estimate in Equation 9, which has time com-
plexity linear in the number of associated simulation nodes.
If one of the children is not updated yet in this animation
step, we choose R′ as the radius update, otherwise we choose
min(R′,R′′).

The combination of these two bounds leads to an average
increase of the sphere radius by only a factor of 1.9 as com-
pared to the tightest possible sphere. For the highest level,
i.e. the root sphere, the average ratio drops to 2.1 instead of
the aforementioned 20.0 (see Figure 3). This results in 48%
less unnecessary ray-sphere intersection tests on average.
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4.2. Ray-Surface Intersections

We start by briefly describing the ray-surface intersection al-
gorithm for point-sampled surfaces. Next, we demonstrate
how we exploit temporal coherence to increase the perfor-
mance of intersection tests.

4.2.1. Intersection Algorithm

When a ray hits a leaf node, we intersect it with the el-
lipse defined by the node’s surfel. This intersection point x
serves as an initial guess for the following iterative proce-
dure [AA04]:

• Compute the weighted average a(x) of the deformed sur-
fel positions and the weighted average n(x) of surfel nor-
mals in the neighborhood of x within a distance h:

a(x) =
∑si

ωh
x,x′si

x′si

∑si
ωh

x,x′si

, n(x) =
∑si

ωh
x,x′si

n′

si

‖∑si
ωh

x,x′si
n′

si‖
. (12)

These define a plane f (x) = n(x)T (x−a(x)) = 0.
• Test for convergence. The iterative intersection algorithm

has converged if | f (x)|< ε. If not converged, intersect the
ray with this plane. This yields a new intersection point x′.
If x′ falls outside the node’s bounding sphere, the iteration
is stopped and the intersection point is rejected.

• Repeat the above steps until convergence.

As shown in [AA03a] this procedure quickly converges
depending on the initial guess. In our examples we need 3
iterations on average before convergence.

We avoid expensive nearest neighbor queries by using
a static surfel neighborhood for the leaf nodes. The sur-
fel neighbors are precomputed in the undeformed system.
Whenever a ray hits a leaf node we use the stored surfels si
as neighbors for the initial intersection point. Note that the
weights ωh

x,x′si
are computed against the current intersection

point, not against the center of the leaf node. For the exam-
ples given in this paper we used fixed neighborhoods of 16
surfels.

4.2.2. Sphere Node Caching

We can reduce the number of ray-sphere intersection tests
by caching intersected sphere nodes from frame to frame.
For each ray we store the sphere node where we found the
closest intersection point (i.e. the one with the smallest t-
value). In the next frame, we first test for intersection using
this cached sphere node (if there is any). In many cases this
gives us a good upper bound for the intersection depth of the
ray. Next, we test against the root node and descend the hi-
erarchy as usual. However, thanks to the upper bound of the
intersection depth, many more spheres are trivially culled
resulting in less sphere updates and less ray-surface inter-
section tests. We experienced a decrease of 27% on average
in the number of performed intersection tests thanks to the
sphere node caching.

4.3. Clipping

To be able to render sharp edges and corners we have in-
corporated a new clipping technique. Surfels are grouped in
surfel collections between which we explicitly store clipping
relations. Suppose we have a sharp edge defined as the in-
tersection of two surfaces S1 and S2. Whenever a ray inter-
sects a surfel of surface S1 we test if the intersection point is
clipped by surface S2. If so, the intersection is rejected.

To be able to perform the clipping test, we store for each
surfel of S1 the two nearest surfels of S2 and vice versa
(these are precomputed and cached for the undeformed sur-
faces). Clipping is performed using these two nearest sur-
fels of the other surface using the technique proposed in
[WTG04]. Note that clipping is done in (deformed) object
space, as opposed to [WTG04] where clipping is performed
in image space. This has the advantage that we are able to
anti-alias the sharp edges and corners by super-sampling (see
Figure 8).

4.4. Putting It All Together

In this section we describe how the individual pieces de-
scribed above are combined to yield the final rendering al-
gorithm for deformable models.

Precomputation. For each surfel si compute its surfel
neighbors. If there are clipping relations, precompute the
clipping neighbors for the relevant surfels. Also compute the
simulation nodes p j and the corresponding weights ωhi

xsi ,xp j

that define the displacement of si. Build the initial bound-
ing sphere hierarchy for the undeformed object. For each
sphere keep a list of simulation nodes p j used by the surfels
bounded by the sphere and keep the corresponding weights
ωR

xc,xp j
. Precompute the entries in A and B for each sphere

(Equation 9).

Rendering. For each ray, test for intersection against the
cached sphere node before testing against the whole hier-
archy. When a node is visited for the first time, update the
center and the radius using Equations 4 and 9. If a node is
already visited before, update the radius using Equation 11,
if possible. When eventually the ray hits a leaf node, up-
date the surfel si corresponding to this node and its surfel
neighbors using Equation 1 (if not already done before in
this time step). For leaf nodes we use the center of the as-
sociated surfel as the center of the sphere. Intersect the ray
with the ellipse defined by si. Perform the iterative intersec-
tion algorithm. If necessary, check whether the intersection
point is rejected by one or more clipping surfaces.

Note that both the update of the sphere nodes and the up-
date of the surfels are done in a lazy manner. Only the nodes
and surfels visited in this time step are updated, leading to
additional savings in computation time.

Optimization For Shadow Rays. When traversing the hi-
erarchy for shadow rays, we can reduce the number of ad-
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Model #Surfels #Sim. Nodes #Spheres #Levels

Armadillo 170k 453 346k 23
Goblin 100k 502 200k 24

CSG Head 91k 253 182k 23
Elastic Ball 6k 88 10k 14

Table 1: Sampling statistics for the different models used in
our examples.

ditional spheres to be updated. If a shadow ray intersects a
parent sphere of which only one child is already updated, we
first test the ray against the updated child. As for shadow rays
any intersection point counts (i.e. we do not have to search
for the closest one), most of the time the other child branch
does not have to be updated nor traversed.

5. Results

We have tested our implementation using four animation se-
quences, all rendered at a resolution of 512 by 384 pixels.
The sampling statistics are given in Table 1, average ren-
dering times (averaged over 3 runs on a Pentium 4, 3GHz,
512Mb ram) are indicated in Figure 5.

The first animation shows the armadillo being hit by a
cannon ball (Figure 6). As can be seen on the left plot in
Figure 5, we achieve an average speedup of a factor 2.1 (8.5
seconds per frame compared to 18.5 seconds per frame on
average) compared to the naive technique, where the sphere
hierarchy is rebuilt in each time step. In the beginning and
end of the animation we clearly gain from caching sphere
nodes as the object does not deform significantly. In the mid-
dle of the animation we also gain from the fact that a large
part of the armadillo is occluded by the cannon ball. This
results in less sphere node and surface updates.

The second sequence shows a goblin creature practicing
gymnastics on the parallel bars (Figure 7). Timing statistics
are given on the second graph in Figure 5. Again, we obtain
a speedup of a factor 2.1 (6 seconds per frame compared to
12.8 seconds per frame on average). In this sequence we gain
from the fact that large parts of the goblin are self-occluded
and do not have to be updated from frame to frame. Note
that the middle curve touches the upper curve around frame
160. Here the goblin is deformed the most, resulting in the
worst fit of the bounding sphere hierarchy.

The third sequence shows three bouncing heads (Fig-
ure 8). Each head consists of three surfaces between which
explicit clipping relations are defined (see Section 4.3). The
timings on Figure 5 indicate a speedup of a factor 2.2 (19
seconds per frame compared to 42.8 seconds per frame on
average).

Finally, the last animation shows 40 elastic balls being
thrown inside a hollow cube (see Figure 9). Thanks to the
dynamic sphere updates and the sphere node caching we ob-
tain an average speedup of a factor 3 compared to the naive

technique (15 seconds per frame compared to 45 seconds per
frame on average).

6. Discussion and Future Work

As demonstrated in Figure 5, exploiting spatial and tempo-
ral coherence leads to significant performance gains over the
naive approach. Speedups are particularly high if the num-
ber of surfels is large compared to the number of simulation
nodes, since sphere updates are linear in the number of simu-
lation nodes. Our method also performs well for animations
where large parts of the surface are occluded and thus not
touched by any rays (e.g. for the animation of Figure 9).

Situations may arise however where refitting (parts of) the
sphere hierarchy is more efficient than lazy updating. As lazy
updating results in sub-optimal bounding spheres, it also re-
sults in more ray sphere intersection testing compared to
the optimal sphere hierarchy. Our experiments showed that
the break-even point (speedup of 1) varies significantly with
the specific sequence. Therefore, one might want to devise
heuristics to decide whether to use lazy updating or to per-
form a (full) sphere hierarchy update.

Storing and reusing spatial and temporal proximity infor-
mation naturally leads to increased memory consumption.
The main bottlenecks are the sphere nodes: for each node
we keep a list of simulation nodes and the corresponding
weights ωR

xc,xp j
, and entries A j and B j (see Equation 9).

However, for the armadillo sequence, where all the surfels
have 16 simulation node neighbors, the sphere nodes have
to store only 16.4 simulation nodes on average, since child
nodes share their simulation nodes with the associated sur-
fels. Storing static surfel neighborhoods requires an addi-
tional 16 pointers per surfel. For the caching of per-ray inter-
sected sphere nodes we can trade off cache size with cache
hit rate by setting a maximum cache size.

Memory overhead can be significantly reduced when
many instances of the same model are present in a scene
(e.g. the animations of Figures 8 and 9). In such cases, we
can reuse the same (undeformed) sphere node hierarchy,
even if the individual instances deform differently. Since
the weights ωR

xc,xp j
, entries A j and B j , and neighborhood

relations are constant over all instances, we only need to
store the properties of the deformed simulation nodes, sphere
nodes, and surfels for each instance.

Tighter bounds on the radius update could be obtained
using a hierarchical approach when computing the optimal
rigid transformation (see Section 4.1.3). Instead of com-
puting a single transformation for the whole object, one
could segment the simulation nodes in different sets and
compute an optimal transformation for each set similar to
[MHTG05]. For example, the model of Figure 7 could be
split into two sets, one for the body and one for the hands.
This yields smaller simulation node displacements and thus
smaller bounds for the updated radii.
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Currently, our method is only suitable for animated mod-
els with fixed topology. For highly dynamic substances, such
as fracturing solids or fluids, our caching schemes would fail
since neighborhood relations change too frequently. How-
ever, we plan to extend our method with dynamic up- and
down-sampling of surfels and simulation nodes to better
handle models that experience extreme deformations. As re-
sampling is often a very localized operation, we expect that
updating of cached neighbors will be fairly efficient.

We want to stress that even though our method is imple-
mented in the context of a point-based animation framework,
our dynamic sphere hierarchy can also be used for other sur-
face representations. For example, if the boundary surface of
the solid is given as a polygonal mesh embedded in an FEM
simulation grid [MG04], the same algorithms can be used by
applying the deformation field to the mesh vertices.

7. Conclusion

We have introduced a new method for efficient raytracing of
animated point-sampled surfaces. Central to our method is a
dynamic bounding sphere hierarchy that is used to accelerate
ray-surface intersection tests. By de-coupling the sampling
of the simulation domain from the sampling of the boundary
surfaces, we are able to update the hierarchy by only look-
ing at the deformation of the simulation nodes. Moreover,
the update is done in a lazy manner, only touching spheres
and surfels that are actually used during rendering. We show
how this dynamic update and additional caching of inter-
sected sphere nodes lead to an efficient raytracing algorithm
obtaining speedups of over a factor of 2 compared to exist-
ing techniques. Finally, our method incorporates the render-
ing of sharp edges and corners which are explicitly defined
using surface clipping relations.
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Figure 5: Timing statistics for the different sequences. From left to right: cannon ball armadillo sequence, gymnastic goblin
sequence, bouncing heads sequence and elastic balls sequence. The straight lines represent the average rendering time over
all frames. The upper curve is the timing without considering any coherence. The middle curve is timed using our technique
without sphere node caching enabled. The lower curve shows the average time per frame employing all acceleration techniques
presented in this paper.

Figure 6: Four frames of the cannon ball armadillo sequence.

Figure 7: Four frames of the gymnastic goblin sequence.

Figure 8: Four frames of the bouncing heads sequence.

Figure 9: Four frames of the elastic balls sequence.
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