
CSG Tree Rendering for Point-Sampled Objects

Martin Wicke, Matthias Teschner, Markus Gross
ETH Zurich

Abstract

This paper presents an algorithm for rendering of point-
sampled CSG models. The approach works with arbitrary
CSG trees of surfel models with arbitrary sampling den-
sities. Edges and corners are rendered by reconstructing
the involved surfaces separately. The reconstructed surfaces
are clipped at intersections. This way, blurring at any mag-
nification is avoided. As opposed to existing methods, which
resample surfaces close to object intersections, the pro-
posed approach preserves the original object representa-
tion. Since no resampling is needed, dynamic scenes can be
handled very flexible. Complex intersections involving any
number of objects can be rendered.

1. Introduction

CSG operations are among the most important model-
ing methods. Consequently, the topic has been extensively
studied for polygonal meshes, spline patches, or volumet-
ric data. However, little work has been published regarding
CSG rendering for point-sampled objects.

Point-sampled objects are usually rendered by splatting
the individual samples such that each sample contributes
its color and depth information to a small area [13]. Each
sample is blended with its neighbors. This surface recon-
struction method blurs sharp features in texture or geome-
try. However, a crucial part of CSG modeling is the ability
to represent sharp edges, creases and corners.

We present an algorithm that allows rendering a CSG
tree that combines several point-sampled objects. Samples
are considered circular disks, so-called surfels. Surfels be-
longing to the same primitive object are blended in order to
generate a smooth surface, surfels belonging to different ob-
jects clip according to the CSG operation applied to the ob-
jects.

During rendering, clipping partners are identified and the
disks are clipped accordingly. Each surfel can be clipped by
multiple clipping partners. Clipping is evaluated for each
pixel.

The main contribution of this paper is a rendering mech-
anism that is able to render arbitrary CSG trees of point-

sampled objects. Sharp features created by the CSG opera-
tions are preserved independent of the magnification level.
The original sampling density of the objects can vary ar-
bitrarily, the presented algorithm preserves this sampling.
This is an advantage especially in dynamic scenes, where
the result of a CSG operation has to be computed for ev-
ery frame.

2. Related Work

The problems arising when rendering objects created by
CSG operations have been intensively studied. For polyg-
onal models, references include, but are not limited to
[4, 5, 7, 9, 10, 11].

Recently, there has been significant work on point-
sampled objects as a modeling primitive [12]. Two pub-
lications also address CSG operations [1, 6]. Since the
reconstruction mechanism commonly used to render sur-
faces from point samples blurs edges, the algorithms pro-
posed in [1] and [6] resample the edges created by CSG
operations in order to avoid blurring artifacts.

Adams and Dutré [1] resample the area around the edges
using very small surfels in order to push the blurred area
below the pixel area. This method is fastest, but can never
completely conceal the point-sampled nature of the edge.
Magnifying the edge will result in blurring.

Pauly et al. [6] introduce a special surfel class that ex-
plicitly represents an edge. This surfel carries two normals,
and is rendered as two clipping surfels with identical cen-
ters. This surfel is moved onto the edge, and the affected
area is resampled to fill holes. This method always provides
sharp edges, but does not support more complex intersec-
tion types like corners.

In contrast to [1] and [6], the proposed method does not
perform resampling of the surfaces.

Zwicker et al. [14] present a hardware renderer for point
sampled geometry that can clip surfels with one or more
clipping planes. However, when more than two clipping
planes affect one surfel, the results are ambiguous. Thus,
complex intersections can not be represented with this ap-
proach. Our algorithm resolves these ambiguities and cor-
rectly renders arbitrarily complex surface intersections.

splat surfels

merge images

CSG Operation

splat clipped surfels

find clipping partners

edge surfels surface surfels

Figure 1. Overview of the algorithm. The CSG op-
eration classifies surfels into edge and surface
surfels. Edge surfels are passed to our edge ren-
dering algorithm. Surface surfels can be rendered
with any point renderer.

3. Algorithm

We present an algorithm capable of rendering sharp
edges and corners created by a series of CSG operations ap-
plied to point-sampled objects. Surfels that are close to a
surface intersection are clipped during rendering. All other
surfels are rendered using an arbitrary renderer. The CSG
algorithm is modified to classify surfels accordingly (see
Section 3.1). Those surfels that need to be clipped are ren-
dered in a two-pass rendering setup. In a first pass, clipping
partners are determined, which are stored in lists along with
the surfels (see Section 3.2). In the second pass, EWA splat-
ting is used to render the surfels, honoring the clipping part-
ners. This is discussed in Section 3.3. Figure 1 illustrates the
rendering setup.

3.1. CSG Operations

CSG operations can be reduced to an inside/outside test.
Consider two objects A and B with surfaces SA and SB, re-
spectively. The surface resulting from the CSG operation
A∩B is constituted of the parts of surface SA that are in-
side B combined with the parts of surface SB inside A:

SA∩B = (SA∩B) ∪ (SB∩A) (1)

The union operation is analogous:

SA∪B = (SA∩ B̄) ∪ (SB∩ Ā). (2)

To improve the readability of the algorithm description,
we only consider union and intersection operations. In Sec-
tion 4, we discuss how to assemble other operations such as
difference using intersection and union.

Our primitives are patches, i.e. point sampled objects
without sharp edges. One CSG operation can create objects
with sharp edges, two or more might create corners. Our al-
gorithm is able to render these edges and corners with high
quality without changing the object representation.

In order to represent complex objects, we store a CSG
tree T . The leaves of this tree represent patches, the inner
nodes store CSG operators. Each inner node thus represents
the result of its CSG operation applied to its child nodes.
We use the CSG tree to resolve inside/outside tests for com-
plex objects (see Section 3.3).

In the remainder of this paper, we use the following nota-
tion: for an object A, SA denotes its surface and TA the CSG
tree node representing this surface. If A is a primitive, PA

denotes the corresponding patch, i.e. the set of surfels rep-
resenting SA.

3.1.1. Inside/Outside Classification It is common prac-
tice to reduce the inside/outside classification for a point-
sampled object A to a front-face/back-face test with respect
to the closest surfel in PA [1]. In order to determine if a point
x is inside A, only its closest surfel s ∈ PA is used for clas-
sification. x is considered inside A if its nearest neighbor s
does not clip x:

[x inside A] ⇔ ¬[s clips x]
⇔ [(x− cs)∗ns < 0]. (3)

Here, cs denotes the center, ns the normal of the closest sur-
fel to x in A, and ∗ the dot product.

As illustrated in Figure 2 (a), this leads to classification
errors. For many applications, these errors are acceptable.
However, in our case they would lead to jagged edges. In
[6], the MLS projection operator is used to obtain an ex-
act classification. As this method is too computationally ex-
pensive to be evaluated several times for each fragment, we
remedy the problem by using the two closest surfels s1 and
s2 for classification. The inside/outside test according to (3)
is performed for both surfels, yielding results in1 and in2, re-
spectively. These are combined depending on the configura-
tion of the closest surfels: We call two surfels s1 and s2 with
centers c1 and c2 concave if s1 clips c2 and s2 clips c1. Oth-
erwise, they are called convex. Figure 3 illustrates the con-
figurations.

We define the inside/outside classification with respect
to an object A using the two closest surfels s1,2 of a point x:
If s1 and s2 are concave, then

[x inside A]⇔¬[s1 clips x]∨¬[s2 clips x], (4)

otherwise, if s1 and s2 are convex,

[x inside A]⇔¬[s1 clips x]∧¬[s2 clips x]. (5)

Figures 2 (b) and (c) show the effect of our classification
method. Note that one can construct situations where even

outside

inside

classification classification
incorrect outsideincorrect inside

(a)

(b) (c)

Figure 2. (a) Using only the closest surfel for in-
side/outside classification leads to classification
errors. (b) The edge created by an intersection of
two differently sampled surfaces, rendered using
only the closest surfel for classification. (c) the
same edge rendered with our inside/outside test.
The yellow surfel is clipped by ten clipping part-
ners.

c1 c2 c1 c2

(a) (b)

Figure 3. (a) Two concave surfels. Each surfel cen-
ter c1,2 is on the front facing side of the other sur-
fel. (b) Two convex surfels. At least one of c1,2 is
on the back facing side of the other surfel.

the use of the two closest surfels for classification leads
to non-intuitive clipping results containing discontinuities.
However, in practice, these situations are very rare, and the
resulting artifacts are only noticeable in extreme closeups.
Thus, using even more surfels for classification does not jus-
tify the additional cost. This problem is also discussed in
Section 5.2.

3.1.2. Surface Reconstruction For point-sampled ob-
jects, the sets SA and SB are represented as discrete sets
of sample points PA and PB. A conventional CSG opera-
tion classifies the sample points into two sets: points that

(a) (b)

Figure 4. (a) The edge of a cube, with surfels dis-
carded by a conventional CSG operation marked
red. Note their contribution to the surface. (b) The
cube rendered without these surfels. Holes appear
along the edge.

are on the resulting surface, and those that are not.
Due to the surface reconstruction method used to ren-

der point-sampled surfaces [8, 13], samples that contribute
to the resulting object are discarded by the CSG operation
(see Figure 4). To make sure that the surface can be properly
reconstructed, we modify the CSG operation to classify the
surfels into four sets instead of two, depending on the sur-
fel radius r and the distance to the the surface of the other
object, d. For an arbitrary CSG operation A◦B, the classifi-
cation is as follows:

• surface surfels: surfels in SA◦B, r < d

• inside edge surfels: surfels in SA◦B that might be
clipped, i.e. r > d

• outside edge surfels: surfels not in SA◦B, but close to
the edge, so they might contribute to the surface, i.e.
r > d

• outside surfels: surfels that do not contribute to the
resulting surface.

Surface surfels can be rendered with any point renderer.
Inside and outside edge surfels are rendered using our edge
rendering algorithm, outside surfels are discarded. Thus, the
edge rendering algorithm handles all point that are close to
the edge, i.e. r > d.

3.2. Finding Clipping Partners

In a first rendering pass, the edge surfels are splatted into
a framebuffer storing a set of surfels C(x,y) for each cell
(pixel), the clip buffer. The clip buffer has the same size
as the viewport, and the same viewing and projection trans-
formations are used.

Whenever a fragment of a surfel s from patch PA is added
to a clip buffer cell (x,y), it is a potential clipping partner of

all surfels t ∈C(x,y) belonging to patches PB with PA 6= PB.
If s and t are close enough to clip, t is added to the clip-
ping partner list of s and vice versa. We consider surfels
close enough to clip if their Euclidean distance is smaller
than the sum of their radii. This results in more clipping
planes than necessary. However, the computational cost in-
volved in exactly determining whether or not two surfels
clip is too high compared to the gain. Function addFrag-
ment is a pseudocode version of the procedure.

Function addFragment(int x, int y, Surfel s)
/* adds a fragment of s to the cell (x,y) */
C← cellSurfels(x, y);
foreach t ∈ C do

if (t.Patch 6= s.Patch and distance(s, t) < s.r + t.r) then
s.addClippingPartner(t)
t.addClippingPartner(s)

3.3. Clipped Splatting

After clipping partners have been determined for all sur-
fels, the surface can be rendered. Clipping is performed dur-
ing ellipse rasterization. Object space coordinates are com-
puted for each fragment. These are then used to determine
whether or not the fragment lies on the surface resulting
from the CSG operations as stored in the CSG tree.

We consider a fragment x created by a surfel from patch
PA. This fragment is part of the surface SA of the object rep-
resented by the leaf node TA of the CSG tree. The algorithm
has to determine if x is part of the surface of the object rep-
resented by the root node of the CSG tree. Therefore, we
traverse the tree bottom up, starting at the leaf TA, until the
root node is reached. TA and its sibling TB are combined
with the CSG operator stored in their father node T ′. To de-
termine whether x lies on the surface represented by T ′, we
apply (1) and (2). As x is part of the surface SA, these equa-
tions can be simplified to

[x ∈ SA∩B] ⇔ [x inside B], (6)
[x ∈ SA∪B] ⇔ ¬[x inside B]. (7)

If x is on the surface represented by T ′, we continue up
the tree. Otherwise, x can be discarded. Function clipped
is a pseudocode version of this algorithm (see also Ap-
pendix A). Note that the inside/outside classification can
yield the values true, false and unknown. The unknown clas-
sification is used if there are no clipping partners to repre-
sent a patch. This case is discussed in Section 3.3.1.

We now need an insideTree-predicate to determine if a
position x is inside the object represented by a CSG tree
T . Using the operator stored in T , we can recursively de-
scend into T and thus reduce the problem to finding an in-
side/outside classification with respect to the leaf nodes of

Function clipped(Fragment x, Object A)
/* determine whether fragment x of Object A is clipped */
T ← findNode(A)
on← true
while (on ∧ ¬isRoot(T)) do

T2 ← getSibling(T)
in← insideTree(x, T2)
T ← T.Father
if in = unknown then

continue
else

switch T.Operator
case ∩ : on← in
case ∪ : on←¬in

end while
return ¬on

T . At each node, the following operations are applied:

[x inside A∪B] ⇔ [x inside A]∨ [x inside B], (8)
[x inside A∩B] ⇔ [x inside A]∧ [x inside B]. (9)

A pseudocode version of the tree traversal is shown in
Function insideTree. The insidePatch predicate implements
the inside/outside classification as defined in Section 3.1.1.
It is discussed below.

Function insideTree(Fragment x, CSGTree T)
/* determine whether fragment x is inside or outside the

object represented by T */
if isLeaf(T) then

return insidePatch(x, T.Patch)
else

switch T.Operator
case ∩ : return insideTree(T.Left) ∧

insideTree(T.Right)
case ∪ : return insideTree(T.Left) ∨

insideTree(T.Right)

3.3.1. Unknown Classifications When clipping a surfel s,
we can only use clipping partners stored with s, i.e. surfels
that have been identified as clipping partners in the first ren-
dering pass. However, during tree traversal, we might need
inside/outside classifications for all patches. Not all patches
are represented with clipping partners for s. Hence, some in-
side/outside classifications remain unknown.

A pseudocode version of the extended classification in-
cluding the unknown value is shown in Function inside-
Patch.

An unknown classification does never lead to discarding
a fragment (see Function clipped). Consider a fragment x of
a surfel s. If the inside/outside classification for x with re-
spect to a patch P cannot be determined, no surfels of P are
clipping partners of s, i.e. P does not intersect s. Thus, s is

Function insidePatch(Fragment x, Patch P)
/* determine whether x is inside or outside P */
/* find all clipping partners that are part of patch P */
C← getClippingPartnersOfPatch(x.Surfel, P)
switch |C |

case 0: return unknown
case 1: return ¬clips(C0, x)
else

sortForDistance(C)
if convex(C0, C1) then

return ¬clips(C0, x) ∧ ¬clips(C1, x)
else

return ¬clips(C0, x) ∨ ¬clips(C1, x)

either completely inside or completely outside P. If any of
the fragments of s needed to be discarded due to P, s would
have been discarded entirely by the CSG operation.

If the inside/outside classification for a complex object
is computed and the classification for one of the involved
patches is unknown, we need to deal with unknown as a
value in Function insideTree. In order to evaluate (8) and
(9), the ∨ and ∧ operators are extended to handle the un-
known value:

A∨unknown = A,

A∧unknown = A

for all A ∈ {true, f alse,unknown}.
The reason for using these propagation rules is as fol-

lows: We check the clipping for a fragment of the surfel s.
If the inside/outside classification for patch PA yields un-
known, s is not affected by PA. Thus, if PA and PB form a
complex object, we can use the classification returned by PB

for the combination of PA and PB. Only if the inside/outside
status for both PA and PB is unknown, the classification for
their combination is unknown as well.

Figure 5 shown an example. Imagine an object defined
by the CSG tree (A∩B)∩C. We consider two surfels s1,s2 ∈
PC. In order to determine which fragments to discard, we
need inside/outside classifications with respect to the ob-
ject A∩B. According to the CSG tree, [x inside A∩B]⇔
[x inside A]∧ [x inside B]. Because s1 intersects the surfaces
of both A and B, this expression can be evaluated for frag-
ments of s1. s2 does not intersect the surface of B, and the
classification cannot be computed. The value of [x inside B]
is unknown. In this case, the classification becomes inde-
pendent of B: [x inside A∩B]⇔ [x inside A]∧ unknown⇔
[x inside A].

4. Implementation

We implemented a test application using our algo-
rithm. Surface surfels are splatted using a hardware splat-
ting algorithm presented in [3]. The software-rendered

s1

s2

PA

PB

Figure 5. A cross-section of an object consisting
of three patches. The patch PC is parallel to the im-
age plane. The inside is shaded. For s1 ∈PC, the in-
side/outside classification with respect to both PA

and PB can be computed. For s2 ∈ PC, the classi-
fication with respect to PB yields unknown. Thus,
the decision which fragments to discard only de-
pends on PA.

edges are stored in a texture that is merged with the
hardware-rendered surfaces in the third pass of the hard-
ware renderer. That way, no additional rendering pass is
needed.

4.1. CSG Operations

For point-sampled objects, the inside/outside test is usu-
ally implemented using an approximation of the signed dis-
tance function. Hence the classification in edge and non-
edge surfels is available at no additional cost.

Throughout the description of our algorithm we only
discussed the union and intersection operations. For point-
sampled objects, the inverted object Ā is obtained by invert-
ing all normal orientations. Using these three operations,
any Boolean operation can be assembled. When a CSG tree
originally contains other operators than union and intersec-
tion, we rebuild it as follows: First, we break other opera-
tions down to combinations of union, intersection and in-
version. Then, all inversion operations are propagated down
the CSG tree until the CSG tree only contains inversion
operations at its leaf nodes. At leaf nodes, inversion is
achieved by inverting the normal orientation of all surfels
in the patch. Consider for example the CSG tree A\(B∪C).
Rewriting the \ operator yields A∩ (B∪C). The inversion
is then propagated to the leaf nodes: A∩ (B̄∩ C̄), which is
an expression that can be evaluated using our algorithm.

4.2. Rendering

For software splatting, the algorithm described in [8] is
used. The algorithm involves computing the matrix inverse
of the splat space to screen space mapping M. When this

mapping is close to singular, i.e. when the splat normal is al-
most perpendicular to the viewing direction, numerical in-
stabilities make the matrix inverse unreliable.

In [8], such splats are discarded. Since they are almost
perpendicular to the viewing plane, the resulting artifacts
are hardly noticeable. However, we use splatting to deter-
mine clipping partners. Missing a clipping plane can result
in serious artifacts, independent of the direction of the clip-
ping plane. It is hence imperative that all potential clipping
partners are considered. Therefore, we can not simply dis-
card surfels with almost singular M. Instead, a thick line is
drawn into the clip buffer, completely covering the ellipse.
This might result in clipping partners being added to surfels
that do not overlap in the clip buffer. As only the closest sur-
fels are taken into account when computing inside/outside
classifications, adding too many clipping partners does not
cause any problems. Surfels that are clipping partners al-
though they do not overlap in the clip buffer are never used
for an inside/outside decision.

5. Discussion

There are two alternative algorithms for edge rendering
after CSG operations on surfel-based objects [1, 6]. In con-
trast to our approach, both rely on resampling. We first dis-
cuss both methods before giving a more detailed compar-
ison with our algorithm in terms of speed in Section 5.1.
Limitations of our algorithm are discussed in Section 5.2.

Adams and Dutré [1] focus on interactive CSG opera-
tions. The main focus of the paper is an accelerated in-
side/outside classification for surfel-based object, so as to
achieve interactivity. Sharp edges are drawn by resampling
the surfaces close to the edges. The surfels close to the edge
are replaced with smaller surfels in order to minimize blend-
ing between the two surface parts. Only the closest surfel
is used for inside/outside classification, and there can only
be one clipping plane per surfel. After the CSG operation
is complete, the resolution of the edge is arbitrarily high,
but fixed. Zooming on the edge will eventually reveal its
blended nature.

Pauly et al. [6] also resample the edges after a CSG
operation. They use the MLS projection operator for in-
side/outside classification. After the CSG operation, the
edges are resampled as follows: Along the edge, pairs of
surfels are identified. Each of these pairs is moved to a point
on the edge, and the two surfels are fused into a special
surfel storing two normals. This surfel will be rendered as
two half-surfels. The holes in the surface that are created
by moving the surfels are closed by resampling the affected
areas and inserting surfels where necessary. The edge can
be refined arbitrarily, and converges toward the edge that
would have been created by the CSG operation applied to
the MLS reconstruction of the surfel sets, as first defined in

[2]. As the edges are created by the special half-surfels, they
remain sharp even when zooming in to the edge. When ap-
plying more than one CSG operation, the resulting corners
cannot be represented this way.

CSG operations between objects with highly different
sampling densities pose problems for both algorithms. As
noted in [6], these problems can be resolved by upsampling
the areas close to edges before the CSG operation.

The algorithm presented herein does not resample the
edges created by CSG operations. Instead, surfels along
the edges are interpreted as circular disks, which are then
clipped. That way, we are able to render arbitrary CSG trees
applied to point-sampled objects. The sampling density of
the participating surfaces can vary arbitrarily. Complex cor-
ners or saddle points can be rendered. As a single surfel can
be clipped by many others, also very sharp edges and de-
generate cases as seen in Figure 7 can be rendered without
artifacts.

Note that arbitrary corners cannot be rendered with [6]
or [14]. Storing several clipping planes per surfel is not suf-
ficient to represent a surface intersection created by a CSG
operation. Hence, in [14], corners are generally assumed to
be convex: a fragment is discarded if it is clipped by any
one of the clipping planes. This is not correct in the gen-
eral case, see Figure 2 for an example of an edge that is nei-
ther convex nor fully concave.

5.1. Performance

The costly edge rendering algorithm is only used for sur-
fels close to the edge. The rendering time is thus mainly de-
pendent on the number of viewport pixels covered by edge
surfels. Usually, edge surfels only amount for a small frac-
tion of all surfels, and only cover a small portion of the
screen. Thus, a timing comparison is difficult, as for conven-
tional renderers, rendering time depends on the total num-
ber of surfels and the total number of pixels covered by the
model.

The following table shows rendering performance for the
scenes shown in Figures 7, 8 and 9, at different zoom lev-
els. The timings were taken on a 3GHz PC with a GeForce
FX5900 graphics board.

Figure # surfels # edge # edge FPS
surfels pixels

7 (b) 1871 972 7189 9.09
33404 2.63

8 (a) 20 20 8763 8.3
47469 2.27

9 (a) 116650 2272 12234 5.55
69450 2.0

The data supports the assumption that rendering time
is linearly dependent on the number of visible edge pix-
els, while the total number of surfels has almost no impact

on computation times. The depth of the CSG tree has only
minor influence on complexity, as the CSG tree is rarely
fully traversed. Spatial coherence can be exploited to further
speed up the CSG tree traversal. Past results of the traver-
sal can be cached and reused for new fragments with new
per-patch classification results.

Our two-pass renderer performing edge clipping is sig-
nificantly slower than a hardware splatter, such as [3]. How-
ever, the latter can not perform any edge clipping. One great
advantage of [1] is that the resampling process does not re-
sult in surfels requiring special treatment. After a CSG op-
eration was applied, the resulting object can be rendered us-
ing hardware splatting. The resampling ensures sharp edges
up to a magnification at which the surface reconstruction
visibly blurs edges created by small surfels.

The combined hardware/software rendering presented
herein is faster than the software renderer provided with
Pointshop3D [6], as long as edges only fill a small fraction
of the screen. Rendering times are similar when approxi-
mately one fourth of all pixels show edges.

Our rendering algorithm offers advantages especially
when the rendered scene includes dynamic CSG operations.
If the CSG result needs to be computed every frame, edge
resampling has to be performed for every frame. Our ren-
dering algorithm can be directly applied after a CSG classi-
fication, making a potentially costly resampling step unnec-
essary. Which algorithm is actually faster highly depends
on the scene, setting and view.

5.2. Limitations

Using the two closest surfels for classification yields
much better results than only using the closest surfel. How-
ever, the classification is not perfect. Figure 6 shows a
schematic drawing of a situation resulting in an artifact.
In order to avoid these artifacts, a smooth surface recon-
struction method like the MLS projection operator has to be
used. We chose not to use MLS projection for performance
issues (see Section 3.1.1). In practice, such artifacts are very
rare. They only occurs if one of the patches is very irreg-
ularly sampled. Even then, only singular pixels along the
edges are affected and the problem is only visible at large
magnifications, and only from very few viewpoints.

Note that just as other approaches [1, 6, 14], our method
suffers from numerical instabilities. When two clipping sur-
fels are almost coplanar, the frontface/backface test (3) be-
comes unreliable. This may lead to jagged edges at surface
intersections.

6. Conclusion

CSG is an important modeling method, that only recently
has been implemented for point-sampled objects. We have
presented the first general approach to rendering of point-

vi
ew

in
g

pl
an

e

sA

sB0

sB1

sB2

Figure 6. Artifact created by our classification
method. Shown is a union operation on patches
A and B. Surfel sA should be clipped at its inter-
section with sB0. However, as the center of sB0 is
far away, sB1 and sB2 are used for classification of
the pixels in question. sA “bleeds” into the surface
of B.

sampled CSG models that preserves the original object rep-
resentation. It is possible to render CSG trees, including ar-
bitrarily complex edges and corners. Edge rendering is per-
formed by clipping surfels that contribute to an edge. Clip-
ping partners are determined during rendering, preprocess-
ing is limited to the CSG classification. There is no need
to change the original object representation in order to dis-
play the edges, the edges are not resampled. This is an ad-
vantage especially in dynamic scenes, where a CSG oper-
ation is computed for every frame. Rendering of arbitrary
CSG trees is possible at frame rates comparable to exist-
ing software splatting algorithms.

References

[1] B. Adams and P. Dutré. Interactive Boolean Operations on
Surfel-Bounded Solids. In Proceedings of Siggraph 2003,
pages 651–656, 2003.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva. Point Set Surfaces. In Proceedings of Visualiza-
tion 2002, pages 21–28, 2002.

[3] M. Botsch and L. Kobbelt. High-Quality Point-Based Ren-
dering on Modern GPUs. In Proceedings of Pacific Graphics
2003, pages 335–343, 2003.

[4] H. Chen and S. Fang. A Volumetic Approach to Interactive
CSG Modeling and Rendering. In Proceedings of the 1999
ACM Symposium on Solid Modeling and Applications, pages
318–319, 1999.

[5] J. Goldfeather, J. P. M. Hultquist, and H. Fuchs. Fast Con-
structive Solid Geometry Display in the Pixel-Powers Graph-
ics System. In Proceedings of Siggraph 1986, pages 107–
116, 1986.

[6] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape Mod-
eling with Point-Sampled Geometry. In Proceedings of Sig-
graph 2003, pages 641–650, 2003.

[7] A. Rappoport and S. Spitz. Interactive Boolean Operations
for Conceptual Design of 3-D Solids. In Proceedings of Sig-
graph 1997, pages 269–278, 1997.

[8] J. Räsänen. Surface Splatting: Theory, Extensions and Im-
plementation. Master’s thesis, Helsinki University of Tech-
nology, 2002.

[9] J. Rossignac, A. Megahed, and B. O. Schneider. Interac-
tive Inspection of Solids: Cross-sections and Interferences.
In Proceedings of Siggraph 1992, pages 353–360, 1992.

[10] N. Stewart, G. Leach, and S. John. An Improved Z-Buffer
CSG Rendering Algorithm. In Proceedings of the 1998 Sig-
graph/Eurographics Workshop on Graphics hardware, pages
25–30, 1998.

[11] T. F. Wiegand. Interactive Rendering of CSG Models. Com-
puter Graphics Forum, 15(4):249–261, 1996.

[12] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop
3D: An Interactive System for Point-Based Surface Editing.
In Proceedings of Siggraph 2002, pages 322–329, 2002.

[13] M. Zwicker, H.-P. Pfister, J. van Baar, and M. Gross. Surface
Splatting. In Proceedings of Siggraph 2001, pages 371–378,
2001.

[14] M. Zwicker, J. Räsänen, M. Botsch, C. Dachsbacher, and
M. Pauly. Perspective Accurate Splatting. In Proceedings
of Graphics Interface 2004, page to appear, 2004.

A. Correctness of Function clipped
Function clipped determines whether or not a fragment

x created by a surfel belonging to an object A needs to be
clipped. The algorithm traverses the CSG tree bottom up,
starting at the leaf node representing A. The algorithm al-
ways terminates, either if on = f alse, or when the root node
is reached.

To show the correctness of the algorithm, we use
a slightly modified but equivalent version of Func-
tion clipped, which simplifies the argument.

Function clipped2(Fragment x, Object A)
// determine whether fragment x of Object A is clipped
T ← findNode(A)
on← true

1 while (¬isRoot(T)) do
T2 ← getSibling(T)
in← insideTree(x, T2)
T ← T.Father
if in = unknown then

continue
else

switch T.Operator
2 case ∩ : on← on ∧ in
3 case ∪ : on← on ∧¬in

end while
return ¬on

We artificially extend the loop to traverse the tree un-
til we reach the root node, also in case on becomes false.

Hence, the condition of the while loop is changed to
¬isRoot(T). The equations

[x ∈ SA∩B] ⇔ [x ∈ SA∧ x inside B], (10)
[x ∈ SA∪B] ⇔ [x ∈ SA∧¬[x inside B]] . (11)

replace equations (6) and (7) in lines 2 and 3. Note that if
x ∈ SA, (6) and (7) are equivalent to (10) and (11).

It is easily verified that the above algorithm is equivalent
to the one shown in Function clipped. If Function clipped
returns f alse, so does the clipped2 function: In this case,
the loop terminates when reaching the root node, thus the
changed termination condition in line 1 does not change the
outcome of the algorithm. When computing a new value for
on, on is never false. Therefore, it can be ignored in the con-
junctions in lines 2 and 3, leading to the same equations as
used in Function clipped.

If Function clipped returns true, so does the clipped2
function: In this case, on = true only holds up to some it-
eration. Before that point, the two algorithms behave iden-
tical, as demonstrated above. Function clipped terminates
as soon as on = f alse. It is sufficient to show that in Func-
tion clipped2, once on = f alse, on is not changed any more.
As on itself is one operand of the conjunctions in lines 2 and
3, these always yield f alse. Thus, on = f alse until the root
node is reached, and true is returned as required.

The algorithm returns ¬on, therefore it is correct if we
can show that

[on = true]⇔ [x isOn OT] (12)

is an invariant of the while loop. OT denotes the object rep-
resented by the tree node T , x isOn OT means “x is on the
surface of OT ”, i.e. x ∈ SOT .

This can be easily shown by induction. The condition
holds at the beginning of the first iteration: since x is part of
a surfel of object A and A = OT due to the initialization of
T , x isOn OT ; on is initialized to true.

Given that (12) holds at the beginning of some iteration,
we show that it also holds at the end. We denote the value of
T at the beginning of the loop T1. Its value at the end of the
loop is T ′, the father node of T1 and T2. Since (12) holds,
x isOn OT1 . There are two cases to consider, depending on
the inside/outside classification for T2, i.e. depending on the
value of in.

1. If in = unknown, on remains in the same state it was.
There are no clipping partners from the object OT2 ,
hence x isOn OT ′ iff x isOn T1. Therefore, x isOn OT ′ .
(12) holds.

2. If in = true or in = f alse, the value of on depends
on the operator stored in T ′. The logic directly fol-
lows equations (10) and (11), which implement (1) and
(2). Thus, after evaluation, [on = true]⇔ [x isOn OT],
which is the invariant.

(a) (b) (c) (d)

Figure 7. (a) A union of five spheres. (b) The same spatial setup, rotated. The green and cyan spheres are now sub-
stracted from the central white sphere. The spheres just touch, thus an extremely thin structure is created. (c) Sam-
pling of the resulting object. (d) Close-up of the spikes. Top: normal view, bottom: sampling.

(a) (b) (c) (d)

Figure 8. (a) An ikosahedron created by the intersection of 20 half-spaces. (b) Sampling. Each face is represented
with one surfel. (c) A cube with differently sampled faces. (d) Sampling of the cube: The faces are represented with
1, 25, and 900 surfels, respectively.

(a) (b) (c)

Figure 9. (a) A femural head minus two spheres. (b) Closeup of a 3-surface intersection. The edges can be magnified
indefinitely without blurring. (c) Sampling. Note the different sampling densities. Surfels are clipped into shape to
accurately represent the edges.

