
Contact Handling for Deformable Point-Based Objects

Richard Keiser, Matthias M̈uller, Bruno Heidelberger, Matthias Teschner, Markus Gross

Computer Graphics Lab
ETH Zürich

8092 Z̈urich, Switzerland
Email: keiser@inf.ethz.ch

Abstract

This paper presents an approach to collision detec-
tion and response for dynamically deforming point-
based objects. Both the volume of an object and
its surface are represented by point sets. In case of
a collision, response forces are computed for pen-
etrating surface points and distributed to volume
points which are used for simulating the object dy-
namics. The decoupling of collision handling and
deformation allows for a very stable collision re-
sponse while maintaining interactive update rates
of the dynamic simulation for environments with
moderate complexity. Simulation results are pre-
sented for elastically and plastically deforming ob-
jects with changing topology.

1 Introduction

Deformable objects play an important role in many
interactive virtual environments such as surgery
simulators or 3D computer games. Soft objects de-
form due to external forces exerted during collisions
with the environment or with other objects such as a
user guided tool. Therefore, both, the collision de-
tection algorithm, as well as the collision response
model play a central role in the simulation of de-
formable objects.

The traditional approach to simulating de-
formable objects is to represent them by volumetric
meshes. The elastic or plastic behavior is then mod-
eled by discretizing the continuous elasticity equa-
tions on these meshes. Many collision detection al-
gorithms and collision response models have been
proposed for deformable, mesh-based objects.

In recent years, point-based representations for
the surface as well as for the volume of deformable
objects have been investigated in computer graph-
ics. Since they do not store the connectivity explic-

itly, they can handle topological changes more eas-
ily. While there are a few methods available for sim-
ulating deformable, point-based objects, the inves-
tigation of robust collision detection and response
algorithms for point representations is still an open
research topic.

In this paper, we present a collision detection
and response algorithm for point-based animation,
where both the volume and the surface are point
sampled. The method stably resolves collisions for
stiff elastic and highly deformable or plastic mod-
els. During collisions, it deforms the point-based
surface and exerts forces on the points representing
the volume yielding plausible collision simulations
at interactive speed.

2 Related Work

Collision detection for deformable surfaces has re-
cently gained a lot of attention in the collision de-
tection community. A survey of recent research can
be found in Teschner et al [21].

Many different approaches exist for collision
handling of deforming objects. Penalty methods,
pioneered by Moore and Wilhelms [12], are prob-
ably the most widely used solutions in computer
graphics. However, these methods cannot ensure
that the objects do not penetrate. Baraff and Witkin
[2] use a constraint-based method to prevent objects
from penetration. This requires solving a linear
complementary problem (LCP), which is computa-
tionally expensive for complex objects. Impulse-
based methods [7, 11] assume short contacts only,
and therefore they are not suitable for soft objects.
Desbrun and Cani [5, 3] presented a system for an-
imation and collision handling of implicit surfaces
generated by skeletons. Exact contact surfaces are
achieved by deforming the implicit layer. The com-
pression of the surface yields response forces which

Proceedings of VMV 2004 315 Stanford, USA, November 16–18, 2004

Animation

Collision Detection

Contact Surface

Collision Response

Point-based Animation

p
h
y
x
e
ls

surfels

colliding surfels

c
o
n
ta

c
t

fo
rc

e
s

contact surfels

Figure 1: Overview of our contact handling frame-
work, shown in orange.

are transmitted to the skeleton. However, the gener-
ated implicit models tend to be blobby.

Point-sampled objects have become very popu-
lar in recent years [18, 25, 26, 6]. In this con-
text, the problem of collision detection and response
has only been addressed very recently. Pauly et
al. [15] were the first dealing with collision detec-
tion of point-sampled objects in their shape mod-
eling system. Klein and Zachmann [9] presented
an approach for time-critical collision detection of
point clouds, where they use a sphere bounding
hierarchy. However, they do not deal with colli-
sion response. Pauly et al. [16] model contact for
point-sampled quasi-rigid objects, i.e. rigid objects
with elastic surfaces. They compute exact contact
surfaces by setting up linear complementarity con-
straints and solving for the tractions that act on these
surfaces. The wrench on the rigid object is then
computed from these tractions.

Recently, M̈uller et al. [14] presented a physical
model derived from continuum mechanics for ani-
mating volumetric objects, where both the volume
and the surface are point-based. Our collision de-
tection and response framework is built on top of
their work.

3 Overview

Figure 1 gives an overview of our collision detec-
tion and response framework. It is built on top of
a point-based animation, which we describe in Sec-
tion 4.

After each animation step, the collision detection

algorithm gets the point-sampled surfaces (collec-
tions of surfels) as input and computes the colliding
surfels (Section 5). From the colliding surfels, a
contact surface is computed which resolves the in-
tersecting surfaces in a plausible way (Section 6).
For the surfels on the contact surface (called con-
tact surfels), penalty forces are compute (Section 7).
These forces are then distributed to the neighboring
physical points, called phyxels.

4 Point-based Animation and Frac-
turing

For our collision method to work, all we require
from the animation method is that the volumes
of the objects are discretized into a set of points
(or phyxels) on which external forces can be ap-
plied, and a set of surface elements (or surfels)
which are animated along with the phyxels. Even
though we use the point-based animation method
described in [14], the collision algorithm would
work with SPH-based approaches [4] as well as
with Lennard-Jones-based techniques [22]. In all
these approaches, the phyxels typically have a finite
influence radiush. During the animation, fractur-
ing naturally occurs when the phyxels can be split
in two or more groups where all phyxels in each
group have a distance larger thanh to all phyxels in
other groups. Once an object has fractured, its sub-
objects should be prevented from merging again
when the distance between them becomes smaller
than h. We use a technique similar to the time-
varying blending graph proposed by Desbrun and
Cani [3] to identify fractured parts. Once two phyx-
els belong to different groups, they receive differ-
ent marks which prevents them from being merged
later.

4.1 Point-based Objects

We define a point-based objectΓk as a cloud of sur-
fels and phyxels, consisting ofn surfelssk with po-
sition sk ∈ R3, andm phyxelspk with position
pk ∈ R3.

For collision detection and response we will of-
ten make use of an implicit representationSk of the
surface defined by the surfelssk ∈ Γk. We compute
the implicit representation as suggested by Alexa et
al [1]:

Sk = {x ∈ R3|fk(x) = 0} (1)

316

Γ1

Γ2

Γ1

Γ2

Φ1,2

Γ1

Γ2

(a) (b) (c)

Figure 2: (a) Detection of colliding surfels by first intersecting the bounding boxes (Section 5). The points
in the shadowed region are collision candidates. Colliding points are outlined in yellow. (b) In the case
where both objects have the same stiffness, the contact surface is the middle of the intersecting volume,
shown as black line. It is initialized by moving the colliding points onto it (Section 6). (c) The final surfaces
after resampling the contact surface.

and fk(x) = n̂k(x)T (x − ak(x)), where
n̂k(x) is the unit normal vector atx andak(x) is
the weighted average of neighbored points tox, i.e.

ak(x) =

∑
sk

(θ(‖x− sk‖)sk)∑
sk

θ(‖x− sk‖) ,

where θ is a smooth, positive, and monotoni-
cally decreasing weighting function. We choose a
truncated Gaussian weighting function. The normal
vectorn̂k(x) is computed as the weighted average
of the neighboring surfel normal vectorŝnsk , i.e.

n̂k(x) =

∑
sk

(θ(‖x− sk‖)n̂sk)

‖∑
sk

θ(‖x− sk‖)n̂sk‖
.

In [1], a simple procedure for computing orthog-
onal projections of a point ontoSk is described. We
refer to [1] for details.

5 Collision Detection

Collision detection for point-based objects amounts
to finding surfels that are inside other surfel-bound
objects.

Bounding volume hierarchies are a means to re-
duce the number of primitives (surfels in our case)
to be tested for intersection. However, because we
deal with highly deformable models, the update of
such a hierarchy is often very costly. Therefore, we
approximate the objects by only one bounding vol-
ume to efficiently discard collisions if the bounding
volumes do not overlap.

We choose axis-aligned bounding boxes
(AABBs) [23] because of their efficient compu-
tation. Furthermore, the intersection volume of
two overlapping AABBs is again an AABB, here
called B. Only the surfelss which are insideB
are candidates for a collision. We can efficiently
find these surfels by first inserting all surfels into a
uniform spatial grid and then intersectingB with
the cells of this grid (see Figure 2 (a)). The grid is
used afterwards as a search data structure for range
and neighbor queries. This approach is similar to
Teschner et al [20].

In a next step, we determine whether the colli-
sion candidates inB are actually penetrating other
objects. Pauly et al. [15] used the MLS surface
[10] as an implicit representation of a point-sampled
model. Instead of the MLS surface, we use the
more efficient implicit surface representationSk de-
scribed in Section 4.1. Such an implicit representa-
tion allows to easily and efficiently specify if a point
is inside or outside of a point-based objectΓk as fol-
lows: First, project a pointx ontoSk, yielding the
projected pointxproj

k . We then definex as being
inside, and therefore colliding, if

(x− xproj
k) · n̂

x
proj
k

< 0, (2)

wheren̂
x

proj
k

is the normal vector atxproj
k .

For simplicity, we assume in the following sec-
tions that we have only two colliding point-based
objectsΓ1 andΓ2, as defined in Section 4.1. In Sec-
tion 8, we discuss contact handling for an arbitrary
number of objects.

317

Figure 3: Left: collision of Igea with plane without
surface contact handling. Middle and right: surface
response of Igea and plane, respectively.

6 Contact Surface

At the time of collision two colliding surfaces in-
tersect. We get a visually consistent contact surface
by assuming that the surface is completely elastic.
Thus, we temporarily recompute the intersecting
surfaces such that they touch. The displacement of
the surface to the contact surface is used for com-
puting the collision response, as described in the
next section, and for rendering.

Assume that we have two intersecting point-
based objectsΓ1 andΓ2. We aim to efficiently com-
pute a reasonable contact surfaceΦ1.2 which lies in
the intersection volumeV = Γ1 ∩ Γ2.

We define distance functionsf1(x) and f2(x)
as the distance of a pointx ∈ V to the implicit
surface representation ofΓ1 andΓ2, respectively.
This distance can be efficiently computed applying
the projection operator [1]. By defining an implicit
functionF (x) = λ1f1(x) − λ2f2(x), the contact
surfaceΦ1,2 can be implicitly defined as

Φ1,2 = {x ∈ V |F (x) = 0}, (3)

whereλ1 andλ2 depend on the surface material.
For instance, if we choose a high value forλ1 com-
pared toλ2, then the intersecting surface ofΓ1 will
adapt to the intersecting surface ofΓ2. We choose
λi dependent on Young’s ModulusEi of a material,
e.g.λi = 1

Ei
, i.e. elastic materials (lowE) adapt to

stiff materials (highE).
To get an initial sampling ofΦ1,2, we move the

colliding surfels ontoΦ1,2, see Figure 2 (b). For
finding the positionsΦ1,2 of a surfels1 ∈ Γ1 such
that F (sΦ1,2) = 0, the Newton-Raphson method
could be used [19]. However, we would need to
compute∇F (s1), e.g. using central differences.
Furthermore, this method might not converge to a
solution. Therefore, we reduce the problem of find-
ing the root to a 1D problem by projecting a sur-
fel s1 onto the implicit surface representationS2 of

Γ2 as described in Section 4.1. The projected po-
sition bex2. Now, we look for the pointx with
F (x) = 0 on the line betweens1 andx2. This can
be done iteratively using Brent’s algorithm [19]. If
the boundary of the intersecting volume is not con-
vex, it might happen that the line betweens1 andx2

is not inside the volume. Therefore, we check after
each iteration if the computed position on this line
is inside the volume. If it is not, we simply delete
this surfel.

To get an even and hole free sampling of the con-
tact surface, we apply the resampling scheme pro-
posed in [14], consisting of relaxation and resam-
pling steps. During the relaxation steps the surfels
are distributed and then reprojected ontoΦ1,2, until
the whole surface is covered. While the relaxation
results in alocally uniform distribution, a certain
density of surfels ensuring that the whole surface
is covered is achieved during the resampling steps
by inserting or deleting surfels. The combination
of both relaxation and resampling results in an ef-
ficient algorithm for covering a certain area, as was
already stated by Witkin and Heckbert [24].

For visual accuracy, the normal vectors are
recomputed using Principal Component Analy-
sis (PCA), i.e. we compute the Eigenvectors of
the covariance matrix of the local neighborhood,
where the Eigenvector corresponding to the small-
est Eigenvalue is the normal direction [8].

7 Collision Response

We have shown above how a contact surface can
be computed from the colliding surfels. We call
the surfels on this surface contact surfels. The in-
formation gained during the creation of the contact
surface is used to apply a penalty method which
separates intersecting objects, i.e. forces are com-
puted which act against the penetration. While
penalty methods are efficient to compute and yield
stable animations, they do not prevent objects from
penetrating. However, since we have already han-
dled penetration by deforming the surface, a simple
penalty method is sufficient as collision response
model for the volume.

In the following subsections, we describe an ap-
proach which computes a penalty and friction force
for each contact surfel. These forces are then dis-
tributed to the phyxels of the colliding objects. We
consider two colliding objectsΓ1 andΓ2 and derive
the forces forΓ1. The forces forΓ2 are computed

318

analogous.

7.1 Penalty Force Computation

The penalty force separates two intersecting ob-
jects along the deformation direction, i.e. the dis-
placement direction fromΓ1 to Φ1,2 of a surfel
sc ∈ Φ1,2. We estimate this directiond1 by search-
ing for the closest surfels1 ∈ Γ1 to sc, i.e. d1 =
s1 − sc, see Figure 4. Here we assume small pene-
trations. For large penetrations, the direction to the
closest surfel does not necessarily correspond to the
correct deformation direction, see Section 9.

f pen
1

s1

s2

f fri
1

1

d

Γ1

Γ2

1

sc
Φ1,2

Figure 4: Penalty and friction force computation for
Γ1 of a surfelsc ∈ Φ1,2.

We then set up a force-displacement relationship
betweensc and s1. We choose a linear elastic
model, i.e. we attach a linear spring of zero rest
length betweensc ands1 resulting in the follow-
ing force:

fpen
1 = −kspringd1,

where kspring is the spring stiffness. This
stiffness is a parameter of our collision response
model. It controls the trade-off between quality,
i.e. small penetrations, and the stability of the sim-
ulation. The stability problems in connection with
stiff springs can be reduced by adding damping:

fpen
1 = −(kspringd1 + kdampḋ1). (4)

The time derivative of the deformation deptḣd1

is equal to the relative velocity in direction ofd1,
i.e. ḋ1 = (vrel

1 · d̂1)d̂1, whered̂1 is normalized,
vrel

1 = (v1−v2), v1 andv2 are the velocities ats1

and at the closest surfels2 ∈ Γ2 to sc, respectively.
Note that because the penalty force is linear to

the displacement, and the displacement depends on

Young’s Modulus, the penalty force also depen-
dents on Young’s Modulus.

7.2 Friction Force Computation

To prevent two objects from freely sliding relative
to one another, we apply a Coulomb friction force
as proposed in [11] to each surfelsc:

ffri
1 = −µkin‖fpen

1 ‖v̂per
1 , (5)

wherev̂per
1 is the normalized velocity vector tan-

gential to the normalized penetration direction̂d1,
i.e. vper

1 = vrel
1 − (vrel

1 · d̂1)d̂1, andvrel
1 is the

relative velocity as defined in the previous section.

7.3 Force Distribution

The total collision response force of a surfelsc ∈
Φ1,2 for Γ1 is the sumfpen

1 + ffri
1 of the forces

defined in Equation (4) and (5).
According to Newton’s third lawactio =

reactio, each force yields a force in the opposite
direction. Therefore,sc also receives the reaction
force ofΓ2 and vice versa, i.e.

f1 =
(fpen

1 + ffri
1)− (fpen

2 + ffri
2)

2
, (6)

such thatfsc
= f1 + f2 = 0. The factor 1

2

is needed because each force is considered twice,
once as a force ontoΓ1 and once ontoΓ2.

To get a penetration force that is independent of
the surface sampling, we scale the force with the
local surfel densityρsc , i.e.

fscal
1 = ρscf1. (7)

We use a simple estimation forρsc as suggested
by [17]:

ρsc =
k

πr2
sc

,

wherersc is the distance to the furthest of thek
nearest neighbors ofsc.

The scaled forcesfscal
1 defined on the contact

surfels are then distributed to the phyxelsp1 ∈ Γ1

using a weighting functionω, which depends on the
distancedsc,p1 = ‖sc−p1‖. As a weighting func-
tion we use the even polynomial kernel proposed
by Müller et al. [13] for SPH. It has the nice prop-
erty that it is zero with vanishing derivatives at the
boundary:

319

ωsc,p1 =

{
315

64πh9 (h2 − d2
sc,p1)

3
if dsc,p1 ≤ h

0 otherwise,

whereh is the support of the kernel. We chooseh
equal to two times the influence radius of the phyx-
els. If the number of phyxels withinh is locally
smaller thank (e.g. k = 6), we chooseh to be
equal to the distance to the furthest of thek nearest
neighbors. The forces of all surfels need to be dis-
tributed to the phyxels such that the sum of all surfel
collision forces is equal to the sum of all phyxel col-
lision forces. The forcefsc,p1

acting on a phyxel
p1 induced by a surfelsc is then

fsc,p1
=

ωsc,p1fscal
1∑

p1∈Γ1
ωsc,p1

. (8)

The total collision force acting on a phyxelp1 is
the accumulation of all surfel forces

fp1
=

∑
sc∈Γ1

fsc,p1
. (9)

This force will act onp1 like an external force at
the next time step.

8 Implementation & Results

The functionanimate shown below is a pseu-
docode version of one animation step for all point-
based objectsΓi = (Si, Pi), whereSi is a set of
surfels andPi a set of phyxels. We assume that
all data structures are already initialized. First, the
phyxels are animated, and along with the phyx-
els the surfels. A description of our animation
framework is beyond this paper, and we refer the
interested reader to [14]. For fast neighbor and
range queries of the phyxels and surfels, a hash
data structure is used as suggested by Teschner et al
[20]. With this data structure, insertion and spatial
queries for points have constant time complexity.

After both phyxels and surfels are animated, col-
lision handling for each pair of objects is performed.
A bounding box is computed for both objects and
the surfels in the intersecting box are checked for
collision as described in Section 5. The colliding
surfels are moved to the contact surfaceΦ. Af-
terwards,Φ is resampled and for visual accuracy
the normals are recomputed using PCA (Section 6).
The penalty forces are computed for each contact

Function animate
/* Animation of Point-based Objects*/

foreachΓi = (Si, Pi) do
animatePhyxels(Pi);
hPi ← updatePhyxelSearchDS(Pi);
animateSurfels(Si, hPi);

/* Contact Handling*/
foreachPair (Γj ,Γk) do

hSj ← updateSurfelSearchDS(Sj);
hSk ← updateSurfelSearchDS(Sk);
bbj ← getBoundingBox(Sj);
bbk ← getBoundingBox(Sk);
bb← intersectBoundingBoxes(bbj , bbk);
Cj ← getCollidingSurfels(hSj , bb, hSk);
Ck ← getCollidingSurfels(hSk , bb, hSj);
Φ← displaceSurfels(Cj , Ck, hSj , hSk);
resampleContactSurface(Φ);
recomputeNormalVectors(Φ);
computeSurfelForces(Φ, hSk , hSj);
computePhyxelForces(Φ, hPj);
computePhyxelForces(Φ, hPk);
S′j ← Sj \ Cj ∪ Φ;
S′k ← Sk \ Ck ∪ Φ;

surfel onΦ and then distributed to the neighbor-
ing phyxels (Section 7). Finally, the new surfaceS′

consists of the non-colliding surfels unified withΦ.
Note that after having computed the penalty forces,
the new collision free surfaceS′ is used only for
rendering. The next time step operates on the origi-
nal surfaceS. However,S′ is also used for contact
handling with further objects. Therefore, contact
handling depends on the order of the object pairs.
However, in practice there is only little difference.

An example for contact handling is shown in Fig-
ure 6 (see color pages), where three plastic Max
Planck busts fall onto each other building a pile, fall
apart again and finally come to rest (see our video at
http://cg.inf.ethz.ch/∼rkeiser/Papers/VMV2004/).

We use stiff elastic spheres for Newton’s Cradle,
see Figure 7. In the middle picture the contact sur-
face of the first sphere is shown.

The Santa Claus riding the dragon, shown in
Figure 8, is an example for contact handling be-
tween two highly complex models. To prevent that
the mouth of the dragon self-intersects we store
all neighbors within the influence distance. If two
phyxels come close which were not in the influence
region before, a simple penalty force is applied to
the two phyxels.

320

In Figure 9 we perform the same animation as
in [14]. The Igea’s hair shock is fixed while the
gravitation force is pulling its head down. Because
the object is highly plastic, it first stretches and then
fractures. Our algorithm detects the two separated
parts and converts them into two separated objects.
Afterwards, contact handling between the two ob-
jects is performed as described above.

An example of a contact surface is shown in Fig-
ure 3, where the Igea penetrates a plane deeply due
to a smallkspring constant. The plane is not ani-
mated, but the same surface response is applied to it
as to the Igea. This yields a flattening of the Igea’s
head, to which the plane adopts.

In Figure 5, we show the time measurements of
two colliding Max Planck busts with each 10k sur-
fels and 390 phyxels on a Pentium 4 with 3 GHz
and 1 GB RAM. For rendering we use a fast surfel
renderer exploiting our NVidia GeForce FX 5900
graphics card. We made the busts elastic such that
the physical animation performs in about constant
time. The green line shows the total time needed
for the animation including contact handling and
rendering. The time needed for contact handling is
shown in blue, and the number of colliding surfels
is shown in red.

There are many factors influencing the perfor-
mance: For a large numberc of colliding surfels,
computing the phyxel forces is the most expensive
step. This can be done inO(c · p), wherep is the
average number of phyxels within the influence ra-
diush of a colliding surfel. Thereby we assume that
range queries can be done in constant time using the
hash data structure, see [20]. The time complexity
for computing the colliding surfels depends linearly
on the number of surfels in the intersected bounding
box. For computing the contact surface, the pene-
tration depth is crucial for the performance. Deeper
penetration usually means that more iterations are
needed to find the contact surfaceΦ and to resam-
ple it.

9 Limitations

Like all discrete collision detection algorithms,
our approach fails if an object completely moves
through another object between two time steps. Fur-
thermore, the computation of the penalty force de-
pends on an accurate estimation of the deformation
direction. Therefore, the algorithm is especially
susceptible to fail for deep penetrations, where the

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350

time steps

ti
m

e
 [

m
s
]

0

200

400

600

800

1000

1200

1400

#
 c

o
ll

id
in

g
 s

u
rf

e
ls

Figure 5: Performance measurement for two col-
liding Max Plancks. Green: total animation time.
Blue: contact handling time. Red: number of col-
liding surfels.

penalty force might point to other directions than
the actual deformation direction. Also the contact
resolving of the surface might be very costly for
deep penetrations.

10 Conclusion & Future Work

In this paper, we have presented a novel approach
for interactive contact handling of point-based ani-
mated objects.

We have presented an algorithm for efficiently
computing a contact surface for intersecting sur-
faces. For the surfels on this contact surface a col-
lision response force is computed. These forces are
then distributed to the phyxels.

By using two different object representations for
collision detection and deformation, i.e. a high res-
olution surface (surfels) for contact handling and a
low resolution representation (phyxels) for the de-
formation, the animation is both stable and effi-
cient. Furthermore, we never observed oscillations
for resting contacts, as they often arise in meshes.
We believe that this is due to the smoothing effect
of the distribution of the surfel forces to the phyx-
els. Furthermore, computing a contact surface is
efficient using points because a simple and fast re-
sampling can be applied without having to deal with
consistency constraints.

Note that our collision detection and response al-
gorithms could be applied for meshes as well. The
forces could be distributed to the vertices of the
tetrahedra similar to the phyxels. If a high resolu-

321

tion mesh is used for the surface, only the vertices
could be checked for collision similar to the surfels.

A difficult problem to deal with in the future
is self-collision detection for point-based objects.
This is far from trivial because no explicit connec-
tivity information is given. To make contact han-
dling even more efficient, spatial and temporal co-
herence could be exploited.

11 Acknowledgements

This research is supported by the Swiss National
Science Foundation and by the Swiss National
Commission for Technology and Innovation (KTI).
The project is part of the Swiss National Center of
Competence in Research on Computer Aided and
Image Guided Medical Interventions (NCCR Co-
Me) and KTI project no. 6310.1 KTS-ET.

References

[1] M. Alexa and A. Adamson. On normals and projec-
tion operators for surfaces defined by point sets. In
Proceedings of Eurographics Symposium on Point-
Based Graphics 2004, pages 150–155, 2004.

[2] D. Baraff and A. Witkin. Dynamic simulation of
non-penetrating flexible bodies. InProceedings of
the 19th annual conference on Computer graphics
and interactive techniques, 1992.

[3] M. Desbrun and M.-P. Cani. Animating soft sub-
stances with implicit surfaces. InSIGGRAPH 95
Conference Proceedings.

[4] M. Desbrun and M.-P. Cani. Smoothed particles: A
new paradigm for animating highly deformable bod-
ies. In6th Eurographics Workshop on Computer An-
imation and Simulation ’96, pages 61–76, 1996.

[5] Marie-Paule Gascuel. An implicit formulation for
precise contact modeling between flexible solids. In
Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, 1993.

[6] G. Guennebaud, L. Barthe, and M. Paulin. De-
ferred splatting. InProceedings of EUROGRAPH-
ICS 2004, 2004. To appear.

[7] J. K. Hahn. Realistic animation of rigid bodies. In
Proceedings of the 15th annual conference on Com-
puter graphics and interactive techniques, 1988.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
and W. Stuetzle. Surface reconstruction from un-
organized points. InProceedings of the 19th an-
nual conference on computer graphics and interac-
tive techniques, 1992.

[9] J. Klein and G. Zachmann. Point cloud collision de-
tection. InProceedings of EUROGRAPHICS 2004.
To appear.

[10] David Levin. Mesh-independent surface interpola-
tion. 2003.

[11] B. Mirtich and J. Canny. Impulse-based simulation
of rigid bodies. InProceedings of the 1995 sympo-
sium on Interactive 3D graphics, 1995.

[12] M. Moore and J. Wilhelms. Collision detection and
response for computer animation. InProceedings of
the 15th annual conference on Computer graphics
and interactive techniques, 1988.

[13] M. Müller, D. Charypar, and M. Gross. Particle-
based fluid simulation for interactive applications. In
Proceedings of 2003 ACM SIGGRAPH Symposium
on Computer Animation, pages 154–159, 2003.

[14] M. Müller, R. Keiser, A. Nealen, M. Pauly,
M. Gross, and M. Alexa. Point based animation of
elastic, plastic and melting objects. InACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation 2004, 2004. To appear.

[15] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross.
Shape modeling with point-sampled geometry. In
Computer Graphics, Siggraph 2003 Proceedings,
pages 641–650, 2003.

[16] M. Pauly, D. Pai, and L. Guibas. Quasi-rigid objects
in contact. InProceedings of Eurographics Sympo-
sium on Computer Animation 2004. To appear.

[17] Mark Pauly.Point Primitives for Interactive Model-
ing and Processing of 3D Geometry. PhD thesis, De-
partment of Computer Science, ETH Zurich, 2003.

[18] H. Pfister, M. Zwicker, J. van Baar, and M. Gross.
Surfels: surface elements as rendering primitives. In
Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, 2000.

[19] W. H. Press, S. A. Teukolsky, W. T. Vettering, and
B. P. Flannery.Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
1992.

[20] M. Teschner, B. Heidelberger, M. M̈uller, D. Pomer-
anerts, and M. Gross. Optimized spatial hashing for
collision detection of deformable object. InPro-
ceedings of Vision, Modeling, Visualization VMV03,
pages 47–54.

[21] M. Teschner, S. Kimmerle, G. Zachmann, B. Hei-
delberger, L. Raghupathi, A. Fuhrmann, M-P. Cani,
F. Faure, N. Magnetat-Thalmann, and W. Strasser.
Collision detection for deformable objects. InProc.
Eurographics State-of-the-Art Report. EG Associa-
tion, 2004. To appear.

[22] David Tonnesen. Dynamically Coupled Particle
Systems for Geometric Modeling, Reconstruction,
and Animation. PhD thesis, University of Toronto,
November 1998.

[23] G. van den Bergen. Efficient collision detection of
complex deformable models using AABB trees.J.
Graph. Tools, 2(4), 1997.

[24] A. P. Witkin and P. S. Heckbert. Using particles to
sample and control implicit surfaces. InComputer
Graphics Proceedings, pages 269–277. ACM SIG-
GRAPH, 1994.

[25] M. Zwicker, M. Pauly, O. Knoll, and M. Gross.
Pointshop 3d: An interactive system for point-based
surface editing. InComputer Graphics, SIGGRAPH
2002 Proceedings, pages 322–329.

[26] M. Zwicker, J. Rasanen, M. Botsch, C. Dachsbacher,
and M. Pauly. Perspective accurate splatting. 2004.

322

Figure 6: Plastic Max Plancks building a pile and falling apart again.

Figure 7: Newton’s Cradle with stiff elastic spheres.

Figure 8: Santa Claus riding the dragon.

Figure 9: Fracturing with subsequent contact handling of the plastic Igea model.

323

