

Panoramic Video Texture

Aseem Agarwala, Colin Zheng, Chris Pal, Maneesh Agrawala, Michael Cohen, Brian Curless, David Salesin, Richard Szeliski

A paper accepted for SIGGRAPH'05

presented by Markus Liechti

Panoramic Video Texture Markus Liechti

Outline

- Introduction & Motivation
- Problem Definition
- Panoramic Video Texture Algorithm
- Results
- Conclusion

-

Introduction: Panorama

- Normally done by stitching images together
- Reveals wide all-encompassing view
- Provides limited form of immersion

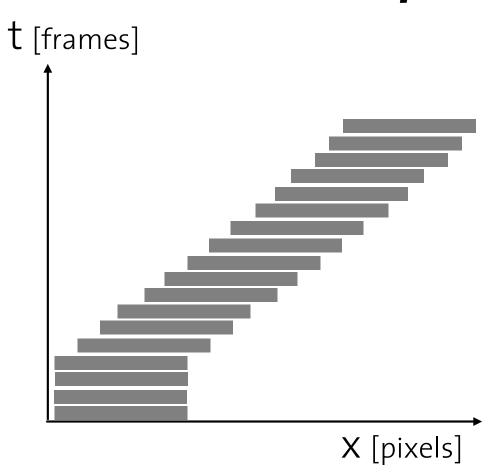
Robert Barker(1792)

PVT - Motivation

Wide field of view

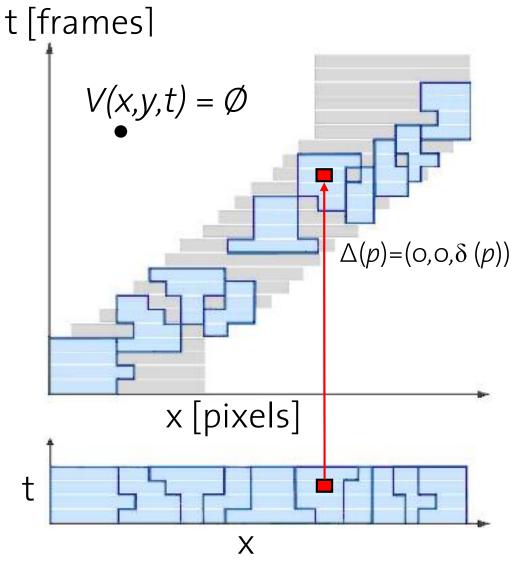
Infinite, non repetitive length

Immersive experience


Related Works

- Image/video hybrids [Finkelstein 1996; Irani and Anandan 1998]
- Full video panoramas
 [Neumann 2000; Uyttendaele 2004]
- Drawbacks:
 - Finite duration in time
 - Need of specialized hardware
 - Restriction of resolution

Input



Panning camera

Spatio-temporal volume

Notations

- •Input volume: spatiotemporal volume *V(x,y,t)*
- Output volume
- Point/Pixel p=(x,y,t)
- Mapping

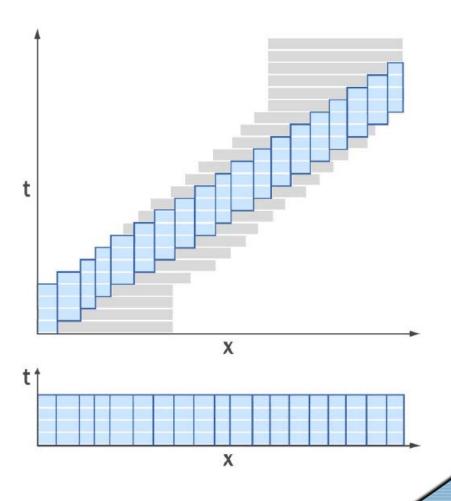
$$(x,y,t) \xrightarrow{\Delta(p)} (x,y,t+\delta(x,y,t))$$

Video Registration

- Align frames
- Warp video frames into one global coordinate system
- Problems with aperiodical movements
- Mask out moving parts of the input video

Dynamic & Static Regions

- Partion scene into separate dynamic and static regions
 - 1 frame for static part, saving memory
 - Dynamic regions can be computed independently and with different durations


Dynamic & Static Regions

- Partition scene into separate dynamic and static regions
 - 1 frame for static part, saving memory
 - Dynamic regions can be computed independently and with different durations
- Background layer B(x,y)
- Binary matte D for dynamic regions
 - D overlaps non-null regions of B along one-pixel wide boundary

Simple Approach

- Sheared rectangular slice through input volume
- Shear it into the output volume.
- May change structure of motion in scene

Simple Approach

Problem Definition

Given a finite segment of video V shot by a single panning camera, create a mapping $\Delta(p) = (o,o,\delta(p))$ for every pixel p in the output panoramic video texture, such that $V(p+\Delta(p)) \neq \emptyset$ and the seam cost of the mapping $C_s(\Delta)$ is minimized.

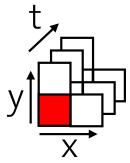
Seam cost (1)

$$C_s(\Delta) = \sum_{p=(x,y,t) \mid (x,y) \in D} (C_b(\Delta, p) + C_v(\Delta, p))$$

Boundary cost

$$C_b(\Delta, p) = \begin{cases} \|V(p + \Delta(p)) - B(p)\|^k & \text{if } B(p) \neq \emptyset; \\ 0 & \text{otherwise.} \end{cases}$$

Volume cost


$$C_{\nu}(\Delta, p) = \sum_{i=1}^{3} \begin{cases} \|V(p + \Delta(p)) - V(p + \Delta(p + e_i))\|^k & \text{if } p + e_i \in D; \\ 0 & \text{otherwise.} \end{cases}$$

Seam cost (2)

$$C_{v}(\Delta, p) = \sum_{i=1}^{3} \begin{cases} \|V(p + \Delta(p)) - V(p + \Delta(p + e_{i}))\|^{k} & \text{if } p + e_{i} \in D; \\ 0 & \text{otherwise.} \end{cases}$$

- Cost function C_s maps onto 3D Markov random field (MRF)
 - Domain $D \times [o..t_{max}]$
 - Free variables $\Delta(p)$ resp. $\delta(p)$

Typical values

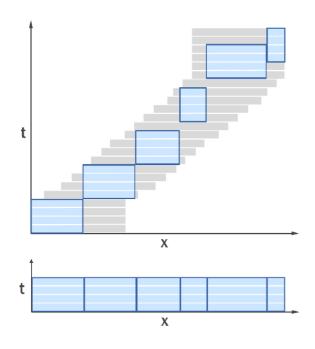
- Size of aligned input video
 - 6000 x 1200 pixels spatially
 - 1000's of frames
 - 500 choices for $\delta(p)$ for every pixel p
- Output video
 - 35 frames
- Output volume
 - 6000 x 1200 x 35 ≈ 2.5 x 10⁸ variables each with 500 possible values

PVT algorithm

- 1. Preprocessing steps
 - Video registration using existing techniques
 - User-drawn mask to separate static and dynamic regions
 - Determine looping length
- 2. Constrained formulation
- 3. Loosening constraints
- 4. Hierachical min-cut optimization
- 5. Gradient-domain compositing

Algorithm: Looping length

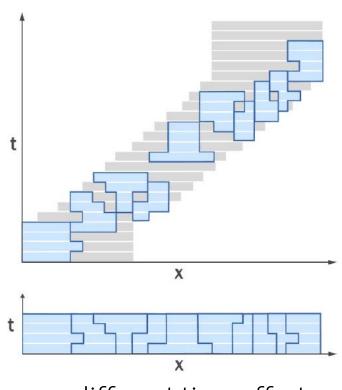
- Choose l_{min} and l_{max}
- Determine best loop length t_{max}
 - Compare each input frame t to each input frame in the range (t+ l_{min} , t+ l_{max}) that spatially overlaps with frame t by at least 50%.
- Find pair of frames t, t+l and set $t_{max}(t)$ to l-1


PVT algorithm

- 1. Preprocessing steps
 - Video registration using existing techniques
 - User-drawn mask to separate static and dynamic regions
 - Determine looping length
- 2. Constrained formulation
- 3. Loosening constraints
- 4. Hierachical min-cut optimization
- 5. Gradient-domain compositing

Alogrithm: Constrained Formulation

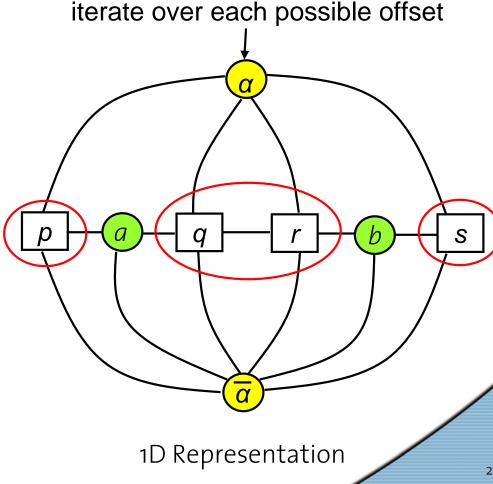
- 1. Single time offset δ at each output location (x,y), regardless of t
- 2. Set $\Delta(p)$ the same for each pixel in a given column of the output
- → 1D search space
- → List of time offsets



m different time offsets

Alogrithm: Loosening the constraints

- Consider now the full 3D MRF Problem
- Every pixel may take on different mapping $\Delta(p) = (o,o,\delta(p))$
- $\delta(p)$ restricted to 2m time offsets



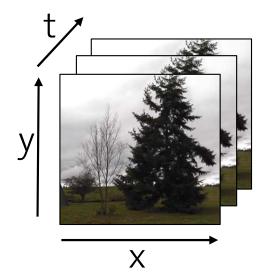
2m different time offsets

Loosening Contraints Iterative min-cut optimization

- Define 3D-graph with each node representing one pixel in output video volume
- Group pixels with same offset
- Still too high computational costs

Alogrithm: Hierarchical mincut optimization

- Compute solution at coarser resolution
- Seams at finer resolution will be roughly similar to those at coarser resolution
- Approach finer resolution using 2-3 hierachical steps


PVT algorithm

- 1. Preprocessing steps
 - Video registration using existing techniques
 - User-drawn mask to separate static and dynamic regions
 - Determine looping length
- 2. Constrained formulation
- 3. Loosening constraints
- 4. Hierachical min-cut optimization
- 5. Gradient-domain compositing

Algorithm: Gradient-domain compositing

- Visual artifacts
 - Exposure variations
 - Errors in alignment procedure
- Treat frames as 3D volume cube
- Composit video in the gradient domain
- Treat video as source of color gradients
- Integrate 3D gradient field to create video texture

Results

7400 x 1300, 107MB ← 2600 x 1400, 106MB 3300 x 800, 65MB

Performance

2-7 hours to compute

 Performance loss due to swapping video frames in and out of memory

More intelligent frame caching would reduce time

Limitations

- Scene needs some kind of stationarity
- Aperiodical movements
- Overlapping of periodically moving elements
- Failure to observe a complete cycle of a periodic phenomenon

Future Work

Automatic segmentation of the scene into dynamic and still regions

Add audio

Video sprites

• 3D

Discussion

