
1

Soft Shadow Volumes for Ray Tracing
Samuli Laine, Timo Aila, Ulf Assarsson, Jaakko Lethinen, Tomas Akenine-Möller

presented by Manuel Lang

2

Outline of this presentation

• Introduction to Soft-Shadows
• Soft-Shadows techniques
• Silhouette Edge / Wedges / 3 SS Rules
• Acceleration Structure
• Light Integration
• Results
• Limits and Conclusion

3

Why Soft Shadow?
• Physically not possible

to build a point light
source

• All light sources in real
world are area lights

• Area light sources
produce soft shadow

• We expect soft shadow
for “real looking”
renderings

4

Why Soft Shadows

• one more example

Point light Area light

5

Area Light and Soft Shadows

• Incoming light intensity is proportional to visible
light area

Shadow caster

Light source

Soft Shadow
Volume

Shadow caster

Light source

6

Methods for Soft Shadows
• Stochastic Ray Tracing

– Use many shadow ray to sample light source
• Radiosity Algorithm

– Visibility of light source defined on a patch level
• Tracing thick rays

– Use pyramid beam, intersecting with shadow
casters

• Soft Shadow volumes
– Projection of shadow caster to light source
– Our method pixelpixel

7

Soft Shadow Volumes

• Use discrete light samples to integrate
• Project occluders on to the light source
• To speed it up only project relevant

edges Æpenumbra wedges
Relevant
Edges

8

3 Conditions for relevant edges

• We have to project an edge to the light
source to calculate shadow for point p
when:

1. Edge is a silhouette edge from some point
on the light source

2. Edge overlaps light source viewed from
point p

3. Edge is a silhouette edge from p

9

The Algorithm
Is E a silhouette for LS? Generate wedge store wedge footprint to hemicubeyes

Cast a ray from P to LS

Return number of visible light samples

for every edge: (pre-compute)

for every P: (ray tracing)

Project point P to hemicube get wedge list from hemicube

Is E a silhouette for P?

Project E to light source Update Light Samples

Is P inside the wedge ?

yes

yes

For every wedge(edge)

Ray not occluded ?
yes

10

1. E is silhouette for light source
• Edge are Silhouette edges from the light

only if light source does not lay entirely
in subspace -- or ++

pp11

pp22
Connected triangles
(mesh, object)

11

2. Edge overlaps light source

• Edge overlaps light source only for points
inside shadow wedge

Shadow caster

Light source

wedge

12

Acceleration Structure for
Condition 2

Hemicube bottom

• Pre compute foot prints of wedges (from edges passed
Test1) before rendering of frame

• Store in a hemicube grid a list of wedges (conservative)

13

Test for Condition 2
• Find all possible wedges by projecting point p from

mid of light source to the hemicube
• This list of wedges and corresponding edges is

conservative
• Test if p is inside the wedge

14

Test for Condition 3

• Next we test if edges returned from the
hemicube data structure are silhouette
edges from point P

• This is true if one (of two) triangle
connected to the edge is front facing
when viewed from point p

• If there is only one triangle -> edge is
always silhouette

P

E

15

The Algorithm
Is E a silhouette for LS? Generate wedge store wedge footprint to hemicubeyes

Cast a ray from P to LS

Return number of visible light samples

for every edge E: (precompute)

for every point P: (ray tracing)

Project point P to hemicube get wedge list from hemicube

Is E a silhouette for P?

Project E to light source Update Light Samples

Is P inside wedge ?

yes

yes

For every wedge(edge)

Ray not occluded ?
yes

16

Integration: Projection

• We add an orientation to each projected
edge so that the right side is the side
where the occluder is located

17

Integration: Depth
Complexity Function

• Depth complexity Function returns the
number of objects in front of the light source

• The projected edges are “changing events” of
depth complexity function

1

11

1 0
0

2

Light source as seen from p Depth complexity function

0Æ

18

Integration Rules

• Build “relative” depth complexity
function by using a counter at each light
sample and the following rules:

19

Integration Step by Step

• Each edge can be processed separately

Æ +1
-1

-1
0 1

0

1
1

20

We use only one shadow ray

• Cast a shadow ray to a point with smallest
relative depth

• To check if light area is visible
• “finding integration constant”

ray ray

21

The Algorithm
Is E a silhouette for LS? Generate wedge store wedge footprint to hemicubeyes

Cast a ray from P to LS

Return number of visible light samples

for every edge: (precompute)

for every P: (ray tracing)

Project point P to hemicube get wedge list from hemicube

Is E a silhouette for P?

Project E to light source Update Light Samples

Is P inside wedge ?

yes

yes

For every wedge(edge)

Ray not occluded ?
yes

22

Results

23

Limits

• Objects have to be triangle meshes
=> NURBS not directly supported

• Only planar light sources
• Inefficient for many unconnected triangles
• Speed depends on “light source size”

24

Future work

• Maybe use graphics hardware (GPU,RPU)
• Maybe possible to speed it further up for

series of nearly identical frames (movies)
• BRDF of light source

25

Discussion

• Pros
– easy to understand and implement
– Significant speedup

• Cons
– Still slow (not real-time, games ☺)
– Only shown for rectangular light sources
– Fuzzy explanations how to build wedge footprints

