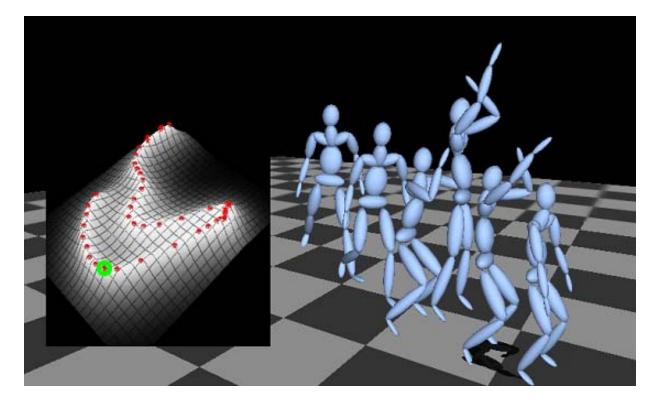
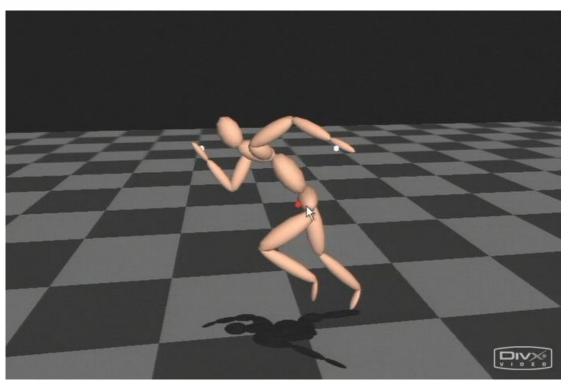
Style-based Inverse Kinematics

Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran Popovic SIGGRAPH'04



Presentation by Peter Hess

Inverse Kinematics (1)



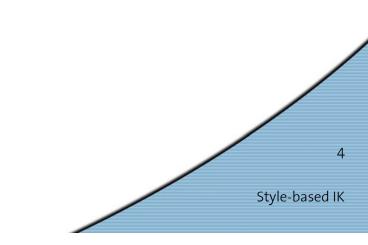
- Goal: Compute a human body pose from a set of constraints.
- Problem: The problem is inherently underdetermined! There are many possible solutions, but most of them don't look natural.

Inverse Kinematics (2)

- Solution: Restrain the algorithm to a certain "style" of natural looking poses ⇒ constrained optimization problem
- Previous approachs: Use a reference pose and define a distance metric
 - Mass displacement
 - Energy consumption
- Drawbacks:
 - Not every metric is good for every style.
 - Finding a good metric for a certain style is difficult.

Overview

- Scaled Gaussian Process Latent Variable Model (SGPLVM)
 - Learning
 - Synthesis
- Optimizations / Extensions
 - Annealing
 - Active Set
 - Style Interpolation
- Applications
- Performance
- Conclusions



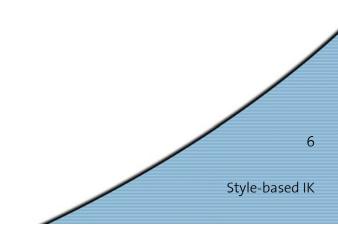
SGPLVM: Setting (1)

Main idea

- Learning
 - Take a set of motion capture poses for training
 - Search a lowdimensonal representation of these data
 - Create a probability distribution function (PDF) in latent space
- Create new poses (synthesis)
 - For a set of constraints, use the PDF to find the pose which is most likely compared to the input.

SGPLVM: Setting (2)

- Pose **q**_i:
 - Input poses are represented by skeletons
 - Joint angles, root position and root orientation
 - 42 dim
- Feature vector **y**_i:
 - Joint angles from \mathbf{q}_{i}
 - Vertical orientation
 - Velocity and acceleration
 - 100+ dim



SGPLVM: Setting (3)

- Scaling matrix W
 - **W** = diag{w₁, ..., w_D}
 - Scales the dimensions of y according to their importance: Wy
- Latent variables x_i
 - \mathbf{x}_{i} are linked with \mathbf{y}_{i} by a Gaussian Process
 - 2-3 dim
 - Lowdimensional representation of \mathbf{y}_{i}
 - Dimension reduction is only possible, because natural movements are very structured.

SGPLVM: Setting (4)

• Kernel k

$$\mathbf{k}(\mathbf{x}, \mathbf{x}') = \alpha \exp(-\frac{\gamma}{2} \|\mathbf{x} - \mathbf{x}'\|^2) + \delta_{\mathbf{x}, \mathbf{x}'} \beta^{-1}$$

- Parameters α , β , γ initially unknown
- Value of k mainly depends on distance between x and x'
- Shows the correlation between y and y', based on their corresponding x and x'

SGPLVM: Setting (5)

The mapping between x_i and y_i is defined by a Gaussian Process. The likelihood for y_{i,k} is:

$$p(\{\mathbf{y}_{i,k}\} | \{\mathbf{x}_i\}, \alpha, \beta, \gamma) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{K}|}} \exp(-\frac{1}{2} \mathbf{Y}_k^T \mathbf{K}^{-1} \mathbf{Y}_k)$$

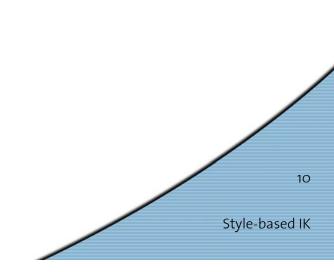
- K is the covariance matrix of the feature vectors: $-k(\mathbf{x}_i, \mathbf{x}_j) = cov(\mathbf{y}_i, \mathbf{y}_j)$
 - distance between \mathbf{x}_i and \mathbf{x}_j small $\leftrightarrow \mathbf{y}_i$ and \mathbf{y}_j are simillar

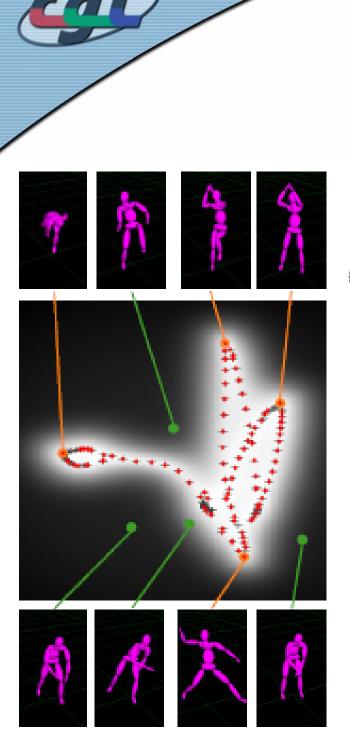
S

SGPLVM: Learning (1)

- Known:
 {**q**_i}, {**y**_i}
- Unknown:

 {x_i}, {w_i}, α, β, γ
- Maximize posterior probability: $\max_{\{\mathbf{x}_i\},\{w_i\},\alpha,\beta,\gamma} p(\{\mathbf{x}_i\},\{w_i\},\alpha,\beta,\gamma \,|\, \{\mathbf{y}_i\})$





SGPLVM: Learning(2)

Minimizing L_{GP} will learn all the model parameters you need:

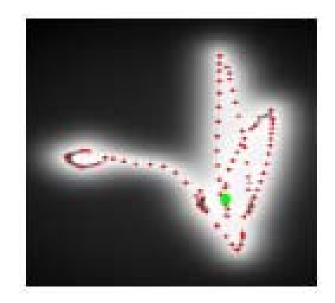
 $\min_{\{\mathbf{x}_i\},\{\mathbf{w}_i\},\alpha,\beta,\gamma} L_{GP} = \frac{D}{2} \ln \left| \mathbf{K} \right| + \frac{1}{2} \sum_{k} w_k^2 \mathbf{Y}_k^T \mathbf{K}^{-1} \mathbf{Y}_k + \frac{1}{2} \sum_{i} \left\| \mathbf{x}_i \right\|^2 + \ln \frac{\alpha \beta \gamma}{\prod_{k} w_k^N}$

- Minimizing L_{GP} arranges {x_i}, so that similar poses are nearby and dissimilar poses are far apart.
 Remember: k(x_i, x_j) = cov(y_i, y_j)
- Likelihood for x is high near the example poses.

Style-based IK

SGPLVM: Synthesis (1)

For new poses **y**(**q**) the according **x** can be found by minimizing L_{IK}:



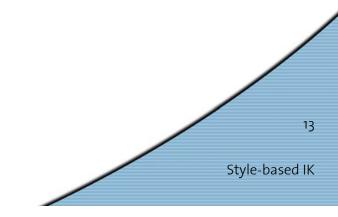
$$\min_{\mathbf{x}} L_{IK}(\mathbf{x}, \mathbf{y}) = \frac{\left\| \mathbf{W}(\mathbf{y} - \mathbf{f}(\mathbf{x})) \right\|^{2}}{\underbrace{2\sigma^{2}(\mathbf{x})}_{\text{prediction error}}} + \underbrace{\frac{D}{2} \ln \sigma^{2}(\mathbf{x}) + \frac{1}{2} \left\| \mathbf{x} \right\|^{2}}_{\text{neg. likelihood of } \mathbf{x}}$$

SGPLV

SGPLVM: Synthesis (2)

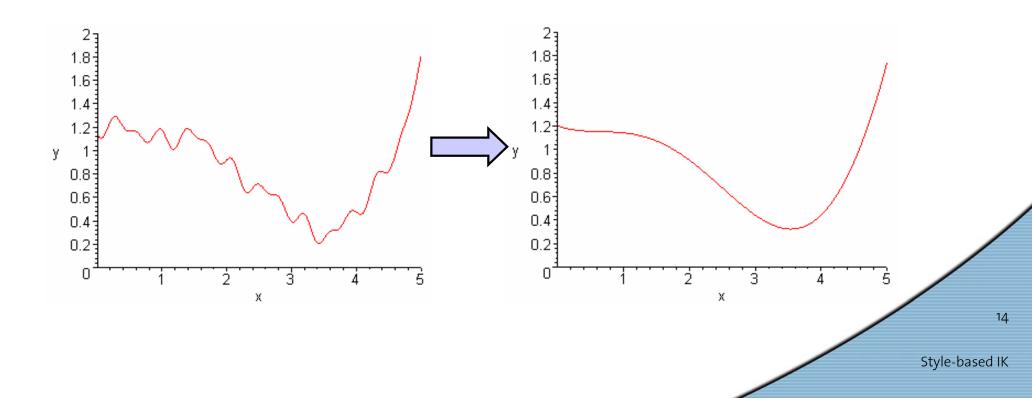
For synthesizing new poses **y** is unknown \Rightarrow a optimize L_{IK} for **x** and **q** $\min_{\mathbf{x},\mathbf{q}} L_{IK}(\mathbf{x},\mathbf{y}(\mathbf{q}))$

s.t. $Constraints(\mathbf{q}) = 0$



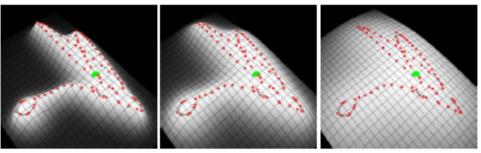
Annealing(1)

- L_{IK} is a complicated function with many local minima
 ⇒ the numerical optimizer may get trapped in a poor minima
- Avoid local minima by smoothing L_{IK}



Annealing(2)

- Learning:
 - use original setting:
 - minimize L_{GP} ➡ {**x**_i}, {w_i}, α, β, γ
 - Keep $\{\mathbf{x}_i\}$, $\{w_i\}$ fixed and add noise to $\{\mathbf{y}_i\}$: minimize $L_{GP} \Rightarrow \alpha', \beta', \gamma'$



15

- Synthesis:
 - Optimize L_{IK} : Use α' , β' , γ' for first steps
 - Switch to interpolated parameters
 - Finish with using α , β , γ

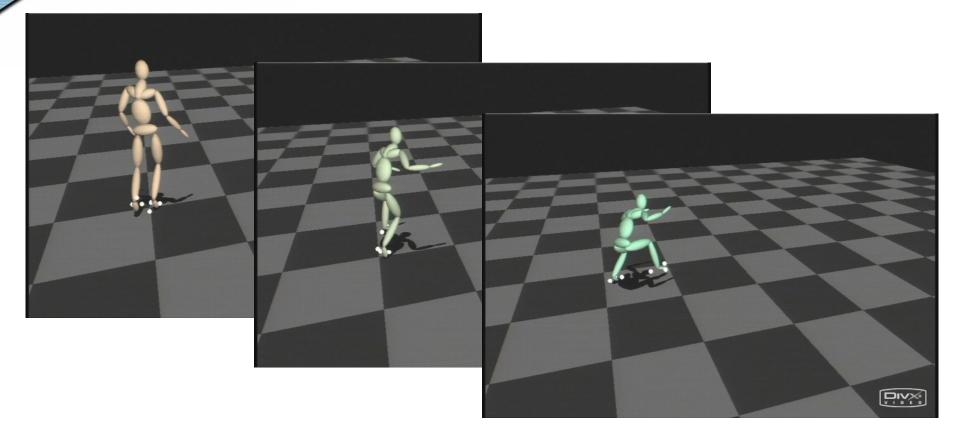
Active Set

- For the optimization of L_{IK} K is needed

⇒ Poor scaling, because K grows quadratically with the number of learning examples.

- Simplify $L_{\rm IK}$ by only using a subset of all the training poses.
- The set of most representative input poses may be calculated during the learing step.

Style Interpolation



Interpolation for two styles for a given interpolation parameter s.

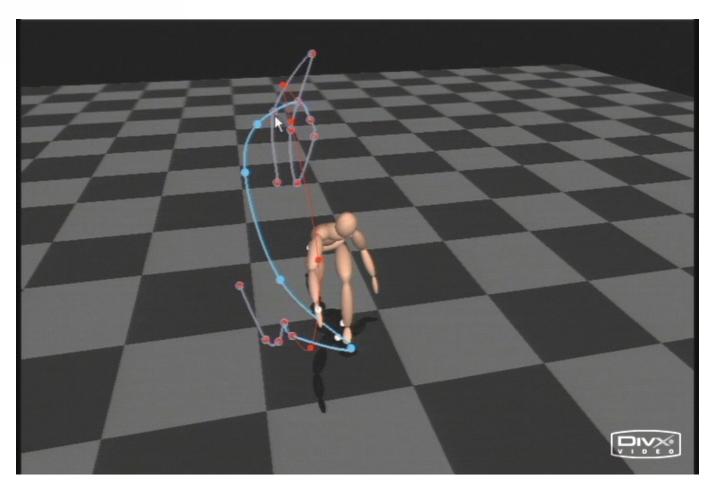
 $L_{s}(\mathbf{x}_{0},\mathbf{x}_{1},\mathbf{y}) = (1-s)L_{IK0}(\mathbf{x}_{0},\mathbf{y}) + sL_{IK1}(\mathbf{x}_{1},\mathbf{y})$

Motion capturing with missing markers

Optical Motion Capturing:

- Occluded markers can be reconstructed with style-based IK
- Works even when 50% of the markers are missing

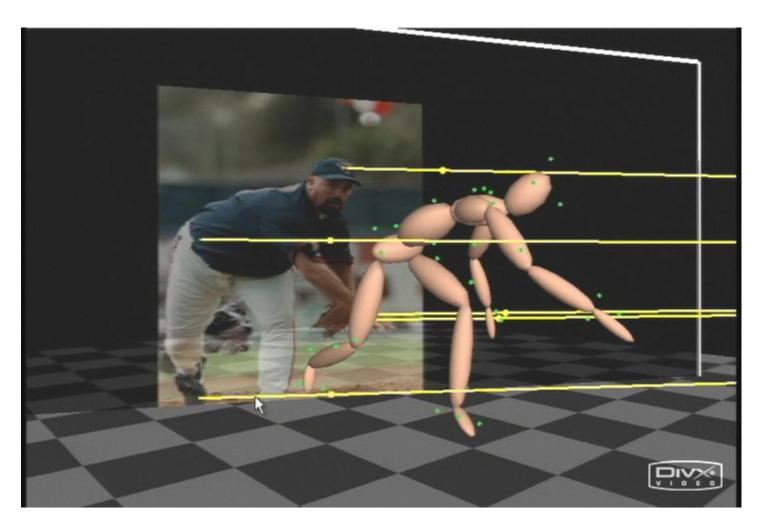
Trajectory keyframing



Create sequence of poses by defining a trajectory for one part of the body.

Style-based IK

Posing from 2D images

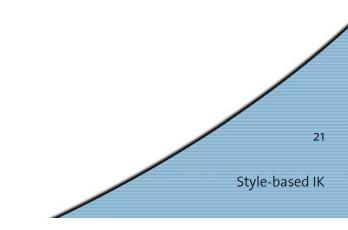


Reconstruct 3D pose from 2D image

Style-based IK

Performance

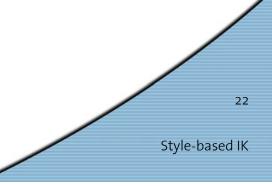
- Computer
 - 2.8 GHz P4
- Model
 - input sequence: 500 frames
 - active set: 100 poses
 - latent space: 3D
- Performance
 - precomputation time: ?
 - synthesis: 23 fps



Conclusion(1)

Good things:

- + Realtime
- + Intuitive & easy to use
- + Usefull for different kind of problems
- + No parameter tuning (except optimizations)



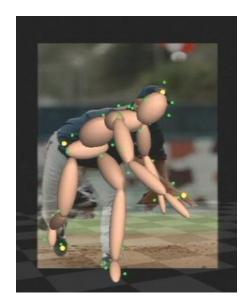
Conclusion(2)

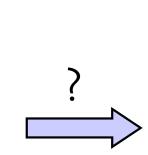
Drawbacks / possible problems:

- Scaling behaviour for more complex skeletons?
- No physics
- Only indirect temporal relation between inputs
 ⇒ no keyframing
- Sensitive to input:

How much can the input differ from the output?

Now: 1 image, 1 person





Future

Future: whole film, n persons

Style-based IK