
Basil Fierz
ETH Zürich Nov. 2005

1

RPU: A Programmable Ray
Processing Unit for Realtime Ray

Tracing
A Paper accepted for

SIGGRAPH’05
by

Sven Woop
Jörg Schmittler
Phillip Slusallek

Presentation by Basil Fierz

Basil Fierz
ETH Zürich Nov. 2005

2

Outline

• Rasterizing & Raytracing
• Architecture
• Instruction set
• Implementation
• Results

Basil Fierz
ETH Zürich Nov. 2005

3

Rasterizing vs. Raycasting

• Rasterizer Problem:
– Given a set of rays and a primitive, efficiently

compute the subset of rays that hit the primitive.

• Raycasting Problem:
– Given a ray and a set of primitives, efficiently

compute the subset of primitives that are hit by the
ray

Basil Fierz
ETH Zürich Nov. 2005

4

The Rasterizing Problem

• Set of rays defined by the pixels
• Primitives are triangles
• Triangles are processed independently
• Only local shading possible

Pixel Processing

Scanline Conversion

Depth Test Pixel Rendering

Vertex ProcessingApplication

Basil Fierz
ETH Zürich Nov. 2005

5

• Per screen pixel a ray is sent through the scene
• For each ray the intersection

with a primitive of the
scene is calculated

• At each intersection
– Shading can occur
– New rays can be spawned

The Raycasting Problem

Basil Fierz
ETH Zürich Nov. 2005

6

Hierarchical Index Structure

• Organize primitives to speed up intersection
calculation

• E.g. kD-Tree. With k as dimension
– Iteratively divides the list of primitives by the median of one

coordinate in two sub lists connected by a node.

2

4

35

1

1

2

3

4

5

Basil Fierz
ETH Zürich Nov. 2005

7

Raytracing Issues

• Many floating point computations
• Flexible control flow (recursion &

branching)
• High memory bandwidth
• Unstructured memory accesses

Basil Fierz
ETH Zürich Nov. 2005

8

Realtime Raytracing

• Software implementation
– OpenRT

• Fixed function ray tracing processor
– SaarCOR [Schmittler 2004]

Basil Fierz
ETH Zürich Nov. 2005

9

RPU: Design Decisions (1)

• Vector operations for instruction level
parallelism

• Threads and Chunks for data level
parallelism

• Tree Traversal Unit
• Scalability

Basil Fierz
ETH Zürich Nov. 2005

10

RPU: Design Decisions (2)

• Threads
– New thread for

every primary ray
– Increase hardware

utilisation
• Chunks

– Exploit coherence between rays
– Synchronously executed

Basil Fierz
ETH Zürich Nov. 2005

11

RPU: Architecture Details (1)

• Traversal Processing
Unit (TPU)
– Synchronously traverse the entire chunk

through the kD-tree
– At each node chunks can be split into sub-

chunks

Basil Fierz
ETH Zürich Nov. 2005

12

RPU: Architecture Details (2)

• Mailboxed List Processing
Unit (MPU)
– Called by the TPU at each non-empty leaf
– For each list entry the corresponding

threads are scheduled for the SPUs

Basil Fierz
ETH Zürich Nov. 2005

13

RPU: Architecture Details (3)

• Shader Processing Unit
(SPU)
– SIMD Unit
– Execute shaders
– Vector splitting: 2/2, 3/1
– Stack to support function calls

Basil Fierz
ETH Zürich Nov. 2005

14

The Entire Architecture

Basil Fierz
ETH Zürich Nov. 2005

15

Programming Model

• Ray centric
• Global shading (secondary rays, shadow rays)
• Procedural Geometry

– Geometry shaders are called for each kD-tree entry
encountered during the traversal of a ray

– Allows direct ray tracing of e.g. bi-cubic splines
• Programmable Materials

– Classical material shaders
– Reflection and lighting can take global parameters into

account

Basil Fierz
ETH Zürich Nov. 2005

16

SPU Instruction Set (1)

• Inspired by the instruction set of current GPUs
– Per component addition, multiplication
– Dot products, integer computation
– Memory reads and writes
– 2D texture read and writes
– Swizzling
– read/write masking
– clamping results to [0,1]
– Function call and branching instructions

Basil Fierz
ETH Zürich Nov. 2005

17

SPU Instruction Set (2)

• A special instruction ‘trace’ to spawn
new rays (recursive ray tracing)

• Instruction pairing
– No dynamic scheduling available
– Two slots per instruction for static

scheduling

Basil Fierz
ETH Zürich Nov. 2005

18

Example Shader
10 add R8.w,R8.x,R8.y ; compute u+v and test

+ if w >=1 return ; against triangle diagonal
11 add R8.w,R8.z,-R4.z ; terminate if last hit

+ if w >=0 return ; distance in R4.z is
; closer than the new one

12 mov SID,I3.x ; set shader ID
+ mov MAX,R8.z ; and update MAX value

13 mov R4.xyz,R8 ; overwrite old hit data
+ return ; and return

1 load4x A.y,0 ; load triangle
; transformation

2 dp3_rcp R7.z,I2,R3 ; transform ray dir to
3 dp3 R7.y,I1,R3 ; unit triangle space
4 dp3 R7.x,I0,R3
5 dph3 R6.x,I0,R2 ; transform ray origin to
6 dph3 R6.y,I1,R2 ; unit triangle space
7 dph3 R6.z,I2,R2
8 mul R8.z,-R6.z,S.z ; compute hit distance d

+ if z <0 return ; and exit if negative
9 mad R8.xy,R8.z,R7,R6 ; compute barycentric

; coordinates u and v
+ if or xy ; and return if
(<0 or >=1) ; hit is outside

return ; the bounding square

Basil Fierz
ETH Zürich Nov. 2005

19

Prototype Implementation (1)

• Xilinx Virtex-II FPGA
• 66 MHz clockspeed
• Four 16bit wide memory chips used as

64bit memory interface
• PCI interface for host communication

Basil Fierz
ETH Zürich Nov. 2005

20

Prototype Implementation (2)

• Support for 32 hardware threads with
four SPUs (Chunk size M = 4)

• Due to the size limitation
– Integer operations were omitted
– Shaders have a maximum length of 512

instructions
– 24 bit floats

Basil Fierz
ETH Zürich Nov. 2005

21

Results: Test settings

• Fully programmable RPU running at 66 MHz
• Fixed function SaarCOR scaled down to match

the RPU
• 2.66 GHz Intel Pentium 4 running (OpenRT)
• 512x384 pixels image resolution
• Only primary rays

Basil Fierz
ETH Zürich Nov. 2005

22

Results: Scene6

• Simple Scene
• Triangles: 806
• OpenRT: 12.9 fps
• SaarCOR: 44.6 fps
• RPU: 20.8 fps

Basil Fierz
ETH Zürich Nov. 2005

23

Results: Quake 3

• Complex Scene
• Triangles: 52’790
• OpenRT: 7.9 fps
• SaarCOR: 19.6 fps
• RPU: 9.7 fps

Basil Fierz
ETH Zürich Nov. 2005

24

Results: Castle

• Complex Scene
• Triangles: 20’891
• OpenRT: 9.2 fps
• SaarCOR: 17.5 fps
• RPU: 2.8 fps

Basil Fierz
ETH Zürich Nov. 2005

25

Conclusions

• First programmable realtime raytracing
unit

• Realtime ray tracing as a vision
• As powerful as software

