

Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother - Vladimir Kolmogorov - Andrew Blake

Siggraph '04

Ursina Caluori, ucaluori@student.ethz.ch

2.2.2006

Outline

Introduction & Motivation Previous Approaches

- Magic Wand
- Intelligent Scissors
- Graph Cut

The Algorithm

- Novelties
- Behind the Scenes

Results Conclusions

Motivation

Foreground Extraction: Say what?

Motivation The GrabCut Approach

Introduction

Overview

"Grab"

1. User marks object

3. User adjusts selection

2. Intermediate Result

4. Final Result

Introduction | *Previous Approaches* | *The Algorithm* | *Results* | *Conclusions*

Introduction

Aspirations

The Goals...

- interactive foreground extraction
- high performance & quality minimal user input
- usability in non-trivial images

...can only be achieved with

- good user interface (→ rectangle / lasso)
- accurate segmentation (\rightarrow iterative graph cuts)
- convincing alpha values (\rightarrow border matting)

Previous Approaches Magic Wand

Input: Seed Pixel(s) + Tolerance

Output: Pixels within tolerance of seed pixels' colors statistics

Previous Approaches Intelligent Scissors

Energy Minimization & Interpolation

Input: Points on segmentation boundary

Output: Pixels within minimum cost contour

Previous Approaches Graph Cut

Graph Cut

- foundation of GrabCut \rightarrow pay attention \odot
- uses boundary and region information
- segmentation: min-cut by energy minimization

Input: Clue-mark inside and outside region

Output: Pixels within "best" inside region

Previous Approaches Graph Cut

A little bit more detailed

- 1. Represent image as graph (weights ~ 1/energy)
- 2. Energy minimization
- 3. Find minimum cost path & cut it $Cost = \sum (cut \ weights)$

Sink (Background)

The Algorithm

GrabCut: extension of Graph Cut

- iterative optimization
- incomplete labelling
- simplified user interaction
- border matting

Model

Give	e n	
from start	N pixels	
	color array	$\underline{z} = (\underline{z}_1, \dots, \underline{z}_N)$
after / init	initial trimap	$T = \{T_B, T_U, T_F\}$
	initial alpha matte	$\underline{\alpha} = (\alpha_1, \dots, \alpha_N), \alpha \in \{0, 1\}$
	GMM components	f_1,\ldots,f_K b_1,\ldots,b_K
	GMM array	$\underline{k} = (k_1,, k_n,, k_N), k_n \in \{1,, K\}$

Model

Wanted

GMM parameters	$\Theta = \{\pi(\alpha, k), \mu(\alpha, k), \Sigma(\alpha, k)\},\$	$\alpha = 0,1; k = 1,,K$
final alpha matte	$\underline{\alpha} = (\alpha_1, \dots, \alpha_N), \alpha \in [0,1]$	

Energy function E = U + V

U: fit of $\underline{\alpha}$ to \underline{z} given GMM (color/region information)

V: smoothness term (boundary/edge information)

Outline

Trimap & Alpha Matte

Initialization

- Trimap
- Alpha matte
- GMMs

Trimap $T = \{T_B, T_U, T_F\}$ (background, unknown and foreground region)

1. user indicates background region T_B (hard constraints!)

2.
$$T_F = \emptyset$$
, $T_U = T_B$

Alpha Matte $\underline{\alpha}$

(alpha value per pixel)

$$\alpha_n = \begin{cases} 0 & n \in T_B \\ 1 & n \in T_U \end{cases}$$

Trimap & Alpha Matte

Initialization

- Trimap
- Alpha matte
- GMMs

Trimap $T = \{T_B, T_U, T_F\}$ (background, unknown and foreground region)

1. user indicates background region T_B (hard constraints!)

2.
$$T_F = \emptyset$$
, $T_U = T_B$

Alpha Matte $\underline{\alpha}$

(alpha value per pixel)

$$\alpha_n = \begin{cases} 0 & n \in T_B \\ 1 & n \in T_U \end{cases}$$

Gaussian Mixture Models

Gaussian Mixture Model (GMM)

- approximation of color distribution
- weighted sum of K gaussians
- parameters: weights π , means μ , covariances Σ
- in color space

In GrabCut

- K = 5
- 1 foreground GMM, 1 background GMM
- 1. fit bg GMM to colors of pixels with $\alpha = 0$
- 2. fit fg GMM to colors of pixels with $\alpha = 1$

Energy function revisited

Iterative Minimization

- 1. Assign GMMs to pixels
- 2. Adapt GMM parameter
- 3. Estimate Segmentation
- 4. Apply border matting

Energy function

 $E(\alpha, k, \Theta, z) = U(\alpha, k, \Theta, z) + V(\alpha, z)$

U: fit of $\underline{\alpha}$ to \underline{z} given GMM (region information) **V**: smoothness term (boundary/edge information)

$$V = \gamma \sum_{(m,n)\in C} \left[\alpha_n \neq \alpha_m \right] \underbrace{e^{\left(-\frac{\|z_m - z_n\|^2}{2\sigma^2}\right)}}_{\text{penalize low color difference}}$$

neighboring pixels at segmentation boundary with similar color get punished

Computation

Iterative Minimization

- 1. Assign GMMs to pixels
- 2. Adapt GMM parameters
- 3. Estimate Segmentation
- 4. Apply border matting

Iterative Minimization

while (!converged) {

- 1. Fill \underline{k} : for each pixel, find best GMM component
- 2. Find best GMM parameters $\underline{\Theta}(\underline{\alpha}, \underline{k})$
- 3. Perform Graph Cut
 - 1. Minimize energy

$$\min_{\alpha_n: n \in T_U} \min_k E(\underline{\alpha}, \underline{k}, \underline{\Theta}, \underline{z})$$

2. Cut \rightarrow adjust $\underline{\alpha}$

Demo

Iterative Minimization

- 1. Assign GMMs to pixels
- 2. Adapt GMM parameters
- 3. Estimate Segmentation
- 4. Apply border matting

Result

Introduction | Previous Approaches | **The Algorithm** | Results | Conclusions

Border Matting

hard segmentation

Border Matting

soft segmentation

W

Border Matting

Iterative Minimization

- 1. Assign GMMs to pixels
- 2. Adapt GMM parameters
- 3. Estimate Segmentation
- 4. Apply border matting

Border Matting

- 1. obtain C from hard segmentation, define w (here w=4)
- 2. $\forall pixel \in T_U$: assign t(n)
- 3. go along C, find best transition for every t (i.e. find Δ and σ by energy minimization)

Avoid color bleeding

- 1. estimate foreground color
- 2. get closest "matching" color from foreground neighborhood

Border Matting

Iterative Minimization

- 1. Assign GMMs to pixels
- 2. Adapt GMM parameters
- 3. Estimate Segmentation
- 4. Apply border matting

Border Matting

- 1. obtain C from hard segmentation, define w (here w=4)
- 2. $\forall pixel \in T_U$: assign t(n)
- 3. go along C, find best transition for every t (i.e. find Δ and σ by energy minimization)

Avoid color bleeding

- 1. estimate foreground color
- 2. get closest "matching" color from foreground neighborhood

User editing

User: fg / bg brush GrabCut : • update trimap • step 3+4 once

User (fore- / background brush) adjust hard constraints

GrabCut

- update trimap
- estimate new segmentation (& apply border matting)

Results

Performance

GrabCut

- Target rectangle: 450 x 300 pixels
- 2.5 GHz CPU, 512 MB RAM
- Initial segmentation: 0.9 sec
- after each brush stroke: 0.12 sec

GrabCut vs. Graph Cut

- quality: perform comparably
- time: Graph Cut probably faster
- GrabCut fewer user interactions

- camouflage & low contrast
- thin structures
- inadequate bg representation
- several objects

- camouflage & low contrast
- thin structures
- inadequate bg representation
- several objects

- camouflage & low contrast
- thin structures
- inadequate bg representation
- several objects

- camouflage & low contrast
- thin structures
- inadequate bg representation
- several objects

Conclusions My 2 Cents

The Algorithm

- fast
- good results in many cases
- nice ideas

The Paper

- claims proven (Gimp-plugin by Matthew Marsh, MS Expression)
- rather minimalist explanations

Conclusions

Future Work

Future Work

- 3D support
- video support
- combination of GrabCut with image completion

Discussion

Questions? Ideas?

