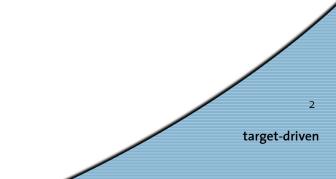

Target-Driven Smoke Animation

Raanan Fattal

Dani Lischinski

School of Computer Science and Engineering, the Hebrew University of Jerusalem


presented by Ivan Appert

Outline

- Fluid Dynamics
- \cdot Previous Work
- \cdot Algorithm
- · Results
- · Limitations
- Discussions

Fluid Dynamics

- fluid dynamics are used for animation of:
 - · liquid
 - \cdot smoke
 - \cdot fire
- \cdot Navier-Stokes
 - \cdot with viscosity
- Euler equations
 - \cdot without viscosity

Fluid Dynamics **Problems**

- realistic simulations
 - [Stam, 1999, Stable Fluids]
 - [Fedkiw, Stam, Jensen, 2001, Visual Simulation of Smoke]

· BUT:

It's hard to control the outcome of the simulation or to give some underlying meaning

- eg: let a cloud change into a face

Previous Work

- Controlling Fluid Animation [N. Foster and D. Metaxas, 1997]
- Computational Fluid Dynamics in a Traditional Animation Environment [P. Witting, 1999]
- Structural Modeling of Flames for a Production Environment [A. Lamorlette and N. Foster, 2002]
- Drawbacks
 - no direct control over the desired results

Previous Work(2)

- Keyframe Control of Smoke Simulation [A. Treuille, A. McNamara, Z. Popovic and J. Stam, 2003]
- uses keyframes
- \cdot impressive results
- \cdot very computational intensive
 - one complete simulation per evaluation
 - problem grows with length

Algorithm **Overview**

- · Idea
- Problem Definition
- \cdot Equations of Flow
- Modifications
- Numerical Simulation

Algorithm Idea

- target-driven approach
 - sequence of targets
 - each target as an attractor
 - advancing stepwise to the target
 - using the fluid dynamics equation to ensure smoke like behavior
 - modifications

Algorithm Problem Definition

- •Given
 - initial density of smoke $\rho_0 = \rho(x, 0)$
 - sequence of target densities $\rho_i^* = \rho^*(\mathbf{x}, t_i)$
- Target
 - smoke should advance toward target
 - natural and smoke-like manner
 - no matching requirement

Algorithm **Equations of Flow**

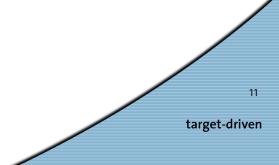
• Euler equations

$$\boldsymbol{u}_t = -\boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla \boldsymbol{p} + \boldsymbol{f}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

- the velocity vector field: **u**
- external forces: f
- hydrostatic pressure: p

target-driven



Algorithm Equations of Flow(2)

 \cdot Advection

 $\rho_t = -\boldsymbol{u} \cdot \nabla \rho$

– smoke density field: ho

Modifications $Force \ F(ho, ho^*)$

- desired properties
 - driving the current density towards the target density

$$\rightarrow \boldsymbol{F}(\rho, \rho^*) \propto \nabla \rho^*$$

$$\tilde{\rho}^* = \boldsymbol{G}(\boldsymbol{x}) * \rho^* \rightarrow \boldsymbol{F}(\rho, \rho^*) = \rho \frac{\nabla \tilde{\rho}^*}{\tilde{\rho}^*}$$

 \cdot rest if target achieved

 $\rightarrow F(\rho^*, \rho^*)$ must be a gradient of a potential field

Modifications **Driving Force** $F(\rho, \rho^*)$ (2)

$$\rightarrow F(\rho, \rho^*) = \tilde{\rho} \frac{\nabla \tilde{\rho}^*}{\tilde{\rho}^*}$$

inserted as external force

$$\rightarrow u_t = -u \cdot \nabla u - \nabla p + F(\rho, \rho^*)$$

target-driven

Modifications Smoke Gathering

- desired properties
 - reduce numerical dissipation
 - generate new density values
- · define $e(\mathbf{x}, t) = \rho(\mathbf{x}, t) \rho^*(\mathbf{x})$
- · apply diffusion to e

$$e_t = \nabla^2 e$$
$$0 = \frac{\delta e}{\delta \mathbf{n}}$$

Modifications Smoke Gathering(2)

- substitute e

 → ρ_t=∇·∇(ρ-ρ*)
 diffuse only the vicinity of the target
 diffuse only where some smoke is present
 → G(ρ, ρ*)=∇·[ρ ρ*∇(ρ-ρ*)]
- \cdot inserted in

$$\rho_t = -\boldsymbol{u} \cdot \nabla \rho + \boldsymbol{G}(\rho, \rho^*)$$

Modifications Attenuation

- \cdot desired properties
 - control the momentum
 - add a viscous-like feature

$$\rightarrow u_t = -u \cdot \nabla u - \nabla p + F(\rho, \rho^*) - v_d u$$

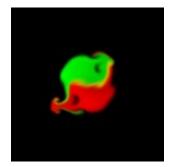
Modifications **Summary**

17

target-driven

• Formulas:

 $\nabla \cdot \boldsymbol{u} = 0$ $\boldsymbol{u}_{t} = -\boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla \boldsymbol{p} + \boldsymbol{v}_{f} \boldsymbol{F}(\rho, \rho^{*}) - \boldsymbol{v}_{d} \boldsymbol{u}$ $\rho_t = -\boldsymbol{u} \cdot \nabla \rho + \boldsymbol{v}_g \boldsymbol{G}(\rho, \rho^*)$

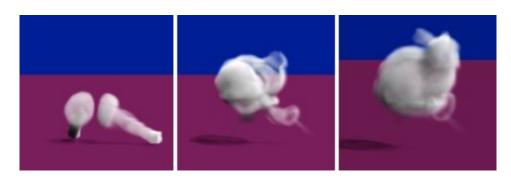

Modifications Multiple field flow

- more precise control
- \cdot split the smoke density field
 - every field with its own initial and target field
 - n driving forces

$$\boldsymbol{F} = \sum \boldsymbol{F}_{i}(\rho^{i}, \rho^{*, i})$$

- n advection equations

$$\rho_t^i = -\boldsymbol{u} \cdot \nabla \rho^i + v_g \boldsymbol{G}(\boldsymbol{\rho}^i, \boldsymbol{\rho}^{*,i})$$


Algorithm Numerical Simulation

- fractional steps
 - apply driving force: $\boldsymbol{u}_{t} = \boldsymbol{v}_{f} \boldsymbol{F}(\rho, \rho^{*})$
 - attenuate momentum: $\boldsymbol{u}_t = -\boldsymbol{v}_d \boldsymbol{u}$
 - advect momentum: $u_t = -u \cdot \nabla u$
 - project
 - · solve: $\nabla^{2p} = \nabla u$
 - \cdot subtract ∇p from ${f u}$
 - advect smoke: $\rho_t = -u \nabla \rho$
 - gather smoke: $\rho_t = v_g G(\rho, \rho^*)$

- new control mechanism for smoke animation
 - direct control
 - no low-level knowledge needed
 - fast

sequence of targets

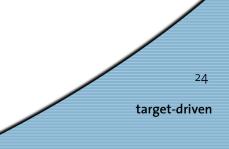
attenant the st	nggraph	X -3 644	254	204	0
-----------------	---------	---------------------	-----	-----	---

• voxelize a 3D animation

target-driven

Limitations

- \cdot using diffusion
 - looks not always natural
- \cdot no optimal approximation
- no very precise parameters
 - experience needed



My Opinion

- · direct control
- fast
- \cdot target-driven approach is effective
- · good results
- no direct control over approximation exactness

Future Work

- multi-resolution gathering term
- \cdot new and more precise control parameter
- \cdot path sketching

Discussion

?????

target-driven