

Image Completion with Structure Propagation

(or: Do NOT trust digital images [anymore]!)

(ACM SIGGRAPH 2005)

[Jian Sun, Lu Yuan, Jiaya Jia, Heung-Yeung Shum]

The things you have to hear:

- Introduction/Motivation:
 - _ In what context to put it
 - Related work | building blocks
 - That's cold coffee! (really?)
- Algorithmic Details:
 - Overall usage
 - The method in detail

\dots (cont.)

- Performance/comparison
 - Advantages/disadvantages
 - _ limits
- Conclusion
 - Applicability
 - _ Future use

Introduction/Motivation

Context

- 2D image reconstruction
 - No additional dimension, such as time.
- Data sources: pictures; or, in a more general view: measurements from the real world.

• Related work

- Image inpainting: small gaps, thin structures
- Example-based approaches
- Approaches with interaction

Cold coffee?

- The "usual" approach
 - Development over years, every time a little improvement
 - Several paths finally join to form an "exceptional" result
- This algorithm's base observations:
 - Only few well-defined curves are necessary
 - There exists an synthesis ordering

Is it really a milestone?

It is really a milestone?

The method's steps

- User Interaction:
 - Giving some "hints" --> define curve for salient structures
- Structure Propagation:
 - Reconstruct curve in unknown region --> create missing part of salient structures
- Texture Propagation:
 - Fill the holes: perform texture synthesis in the unknown regions.

User Interaction

• Given: Image with bothering area:

User Interaction

• User selects object and defines edges:

Algorithmic process

• Structure Propagation:

Algorithmic process

• Final result:

The algorithm's pillar no. 1

- Structure Propagation
 - Given an image with
 - Unknown region Ω
 - User-defined curve C
 - Sampling of
 - known region along user-defined curve

$$P = \{P(1), P(2), \dots, P(N)\}$$

- unknown region along the user-defined curve:
 - Anchor points $\{p_i\}_{i=1}^L$

Illustration

Graph $G=\{V,E\}$ --> labeling problem:

for each anchor point we want to find the label x_i out of $\{1,...,N\}$ and "paste" the corresponding patch $P(x_i)$ at position p_i

Energy minimization

• We want to minimize the energy globally

$$E(X) = \sum_{i \in V} E_{1}(x_{i}) + \sum_{(i,j) \in E} E_{2}(x_{i}, x_{j}) \qquad X = \{x_{i}\}_{i=1}^{L}$$

$$E_{1}(x_{i}) = k_{s} \cdot E_{S}(x_{i}) + k_{i} \cdot E_{I}(x_{i})$$

$$E_{S}(x_{i}) = d(c_{i}, c_{x_{i}}) + d(c_{x_{i}}, c_{i})$$

$$d(c_{i}, c_{x_{i}}) = \frac{1}{N_{s}} \sum_{s} \|dist(c_{i}(s), c_{x_{i}})\|^{2}$$

$$E_{I}(x_{i}) = \frac{1}{N_{s}} \sum_{s'} (diff(P(x_{i})(s') - b_{i}(s')))^{2}$$

Energy minimization

$$E_s(x_i) = d(c_i, c_{x_i}) + d(c_{x_i}, c_i)$$

$$d(c_i, c_{x_i}) = \sum_{s} ||dist(c_i(s), c_{x_i})||^2$$

Energy minimization

Two approaches

i Dynamic Programming for a single user defined curve

ii Belief Propagation for multiple intersecting curves

Dynamic Programming

- Big table (remember Info II)
- Define the cumulative minimal cost from node 1 to node i for all possible x_i

$$M_i(x_i) = E_1(x_i) + min_{x_{i-1}} \{ E_2(x_{i-1}, x_i) + M_{i-1}(x_{i-1}) \}$$

• The optimal label of node L is then

$$x_L^* = argmin_{x_L} M_L(x_L)$$

Now the harder part: multiple intersecting curves

- Belief Propagation
 - is a probability inference algorithm
 - uses message passing between two neighboring nodes
 - iterative procedure
 - uses only a neighborhood of each node in order to calculate minimal energy. But do this for a maximal iteration count of T where T = max. dist. between two nodes

Belief Propagation

- Initialization: $M_{ij}^0 = \mathbf{0}$
- Iteration from t=1 to T:

$$M_{ij}^{t} = min_{x_{i}} \{ E_{1}(x_{i}) + E_{2}(x_{i}, x_{j}) + \sum_{k \neq j, k \in N(i)} M_{ki}^{t-1} \}$$

• Optimal label computation:

$$\mathbf{x}_{i}^{*} = \operatorname{argmin}_{\mathbf{x}_{i}} \{ E_{1}(\mathbf{x}_{i}) + \sum_{k \in N(i)} \mathbf{M}_{ki}^{T} \}$$

Belief Propagation

• $M_{ij}^0 = \mathbf{0}$ iteration count

•
$$M_{ij}^{t} = min_{X_i} \{ E_1(X_i) + E_2(X_i, X_j) + \sum_{k \neq j, k \in N(i)} M_{ki}^{t-1} \}$$

$$\bullet \quad x_i^* = \operatorname{argmin}_{x_i} \{ E_1(x_i) + \sum_{k \in N(i)} M_{ki}^T \}$$

local neighborhood

Grasping breath: where are we?

- The algorithm now has reconstructed the image along the user-defined curve
- Now we need to
 - Fill the "holes"
 - Do photometric correction

Texture Propagation

- Other approaches use the whole image as a "pool" for their texture synthesis...
 - --> irrelevant information may gain importance...
- This algorithm is brighter:

Photometric correction

- Neighboring sampled patches may produce a "seam"
 - Binary masks
 - Defining Poisson Eqs.
 - _ Blending the color-edges.

Overcome the lack of information

• Sometimes there simply are not enough existing sample patches, i.e. the ratio $\frac{known\,curve}{unknown\,curve}$ is too small.

$$\rightarrow \theta^* = \operatorname{argmin}_{\theta} \{ d(R(c_{x_i}; \theta), c_i) + d(c_i, R(c_{x_i}; \theta)) \}$$

Performance analysis (+)

Performance analysis (-)

(a pathological example)

Limits

• Images with layered objects:

- Insufficient number of samples (cf. Einstein)
 - But that is an inherent problem of these kind of algorithms...

The future

- The idea almost gets forced on: The authors plan to develop it further, in order to be applicable to video and meshes.
- Other graphics applications:
 - Identification (customs, forensic, etc.)
 - Observation (Main station cameras, criminology, ...)
 - Archives (paintings, later: sculptures/buildings...)
 - **—** ...

Jumping back: "cold coffee"?

• Actually, yes:) - or... not really: another future use.

